Original Research

Journal of Advanced Veterinary Research (2022) Volume 12, Issue 4, 371-378

Effect of Food Safety Management Practices on Milk Quality and Subclinical Mastitis in Dairy Cow Farms

Eman Maher Tawfik^{1*}, Mohammed Elsherbini¹, Nahed Gomaa Kasem¹, Marwa Fawzy ElMetwaly Ahmed², Adel Abdelkhalek³

 ¹Department of Food Hygiene and Control,

 Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.

 ²Department of Animal Hygiene and Zoonosis,

 Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.

 ³Food Safety, Hygiene and Technology Department, School of Veterinary Medicine, Badr

 University in Cairo, Egypt.

*Correspondence

Eman Maher Tawfik Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt. E-mail address: veteman4@gmail.com

Abstract

The study aimed to investigate the effect of management practices based on the principles of hazard analysis critical control points system application in dairy farms on bulk milk tank quality and the subclinical mastitis prevalence. The study was conducted on two dairy farms located in Dakahlia Governorate, Egypt using observation and questionnaire. Furthermore, cow hygiene scoring, subclinical mastitis prevalence using California Mastitis Testing, and electrical conductivity were evaluated. In addition, the organoleptic, chemical, and microbiological quality of bulk milk tanks were assessed. The results showed that farm I had better adoption of farm management practices (66.20%) than farm II (33.80%). The mean of udder and leg hygiene scores for cows showed no significant variation between both farms. The prevalence of subclinical mastitis in farm I was 0% (0/108), while it reached 6.25% (6/96) in farm II. No evidence of any abnormality during organoleptic examination on both farms. Referring to the chemical analyses, there was a higher significant difference between protein and SNF (p<0.05) in farm I than in farm II. However, this was not the case for fat, in which farm II showed a higher significance (p<0.05). Furthermore, farm I showed a significantly lower (p<0.05) somatic cell count. On the other hand, the total bacterial count (TBC), titratable acidity, and pH had no significant difference in both farms. Finally, these ensure the importance of hygiene management practices for udder health and milk quality.

KEYWORDS Bulk milk tank, Milk quality, Risk factors, Safety management practices, Subclinical mastitis.

INTRODUCTION

Food safety is described in general as "conditions and practices that preserve the quality of food". These practices prevent contamination by any food safety hazards and foodborne illnesses (Griffith, 2000). These hazards refer to any physical, biological, or chemical agent, or condition with the potency to cause adverse health effects for consumers (Codex Alimentarius Commission, 2003).

Milk is a complete diet rich in nutrients and has a complicated biochemical composition of variable nutrients. Approximately 87.2% water, 3.7% fat, 3.5% protein, and 6.8 pH for bovine milk makes it an excellent medium for several microbial growth and multiplication when proper conditions exist (Parekh and Subhash, 2008; Bekuma and Galmessa, 2018; Foroutan *et al.*, 2019).

variation of milk composition and properties are due to species, breed, breeding and crossbreeding, milk yield, age, genetics, feeding, season and weather conditions, management practices, stage and number of lactation, milking intervals, variations during milking, gestation, heat, udder health, variations during milking, variability from different quarters of the udder, excitement (frightening), administration of drugs and/or hormones (Walker *et al.*, 2004; Mehta, 2015).

Various hazards through processing to the consumer, basically influence the quality and safety of the product (Owusu-Kwarteng *et al.*, 2020). Milk quality is demonstrated by normal flavor, color, and chemical composition, being free from disease-causing bacteria, harmful toxic substances, sediment, and extraneous substances, having a lower level of titratable acidity, and low in total microbial count (Hemme and Otte, 2010).

The microbiological quality of milk from a healthy animal is theoretically expected to be safe for human consumption. However, once it is secreted from the udder, milk can easily be contaminated by spoilage microorganisms and food-borne pathogens (Muehlhoff *et al.*, 2013). In general, sources of contamination of milk at the farm level result from herd hygiene and health status, production environment, milking parlor, milk conserving practices, and mastitis prevalence (Velázquez *et al.*, 2019).

Mastitis is one of the major, expensive, and multifactorial disease with a long history of economic loss due to the loss of milk yield, undesirable changes in the milk's composition, extra treat-

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. ISSN: 2090-6277/2090-6269/ © 2011-2022 Journal of Advanced Veterinary Research. All rights reserved.

ment, and control strategies cost especially for subclinical form, extra labor and premature culling of chronically infected cows in dairy production (Halasa *et al.*, 2009; Bardhan, 2013). It can be classified as clinical and subclinical, in contrast to visible changes in the acute form of mastitis, no gross abnormalities in the milk or udder in the case of subclinical mastitis (Abebe *et al.*, 2016). Most cases of subclinical mastitis and their prevention depend primarily on good farming management practices including a stress-free environment, proper maintenance and operation of milking equipment, and optimal milking procedures (Dipanjali *et al.*, 2009). Subclinical mastitis can be inspected indirectly by various, rapid, easy diagnostic methods and yield satisfactory results, consisting of the California mastitis test (CMT), electrical conductivity (EC), and somatic cell count (SCC) (Joshi and Gokhale, 2006; Saber *et al.*, 2017).

Hazard Analysis and Critical Control Point System (HACCP) has been specified as a rational and effective method of assuring food safety from principal production to final consumption (Jan et al., 2016). Several papers have studied the potential application of HACCP methods to livestock production to ensure the safety and quality of the produced milk (Omer and Abdelgadir, 2014). They investigated the most important critical points associated at the farm level related to animals, environmental health, and management practices on dairy farms (Lievaart et al., 2005). The effect of application of such protocols on the production and controlling of diseases related to management practices such as subclinical mastitis found to have noticeable effects on milk quality and the rate of incidence of diseases such as mastitis (Rathod et al., 2017). They pointed out the appropriate control limits and gave the recommendation for more implementation of such protocols (Beekhuis-Gibbon et al., 2011). Therefore, the major objectives of this study were to investigate if the application of management practices based on the HACCP system in dairy farms may yield a better result than conventional methods. Furthermore, determining the critical points associated with animals, farm environment, and management practices especially milking practices can affect the quality of the bulk milk tank (BMT). and suggest the control limits appropriate protocol for the different critical points based on the recommended international standards.

MATERIALS AND METHODS

Farm description

The study was conducted on two dairy farms located in Dakahlia Governorate, (latitude and longitude coordinates: 31.037933, 31.381523), Egypt. Both dairy farms were intentionally selected based on the management system and willingness of owners to participate in the study which involved 360 and 210 lactating dairy cows (Holstein and crossbreed origin) in the 1st farm (farm I) and 2nd farm (farm II), respectively, the cows were in different ages and parities and were kept on a free-stall barn with a drive-through feed alley. The barn was naturally ventilated and bedded with sand which was renewed every two weeks. All cows received mixed ration and supplemental concentrate. The mixed ration was formulated according to the NRC (2001) nutrient requirement recommendations for high-producing dairy cows.

Produced milk is conserved in cooling bulk tanks on both farms till examined, approved, and received by the quality control department of different dairy factories.

Both farms have herringbone milking parlors with different systems and milking routines. Farm I is based on HACCP quality risk management by the adoption of computerized (conductivity) milking system alert and semi-automated teat scrubber for pre-milking preparation, while farm II depended on a conventional milk jar system using iodine as a pre-dipping followed by drying for pre-milking preparation (this represents the most common system in farms).

On-Farm data collection

The two farms were visited monthly during the period of the spring-summer season in 2021 for a total of five visits per farm. During each visit, BMT was considered for quality assessment (or-ganoleptic and chemical composition evaluation). Total bacterial count (TBC) and SCC were estimated in raw milk in relation to the adopted management practices, and milking practices and used to assess the associated risk factors in the examined dairy farms, the questionnaire was collected to evaluate both dairy farms' hygienic practices during an interview with the responsible persons.

The hygienic score of animals (udder and leg hygiene score assessment)

The hygienic status of lactating cows in the two selected farms was evaluated and scored at each visit. Based on visual hygiene scores, udder (U) and leg (L) hygiene scores were assessed during milking according to criteria described by Reneau *et al.* (2003). The selection of these two points is based on the significant association between udder and leg hygiene scores and subclinical mastitis (Schreiner and Ruegg, 2003). For U scoring, an inspection of both fore, and rear udders, their floor, and teats. However, the area from point of the hock to the floor including the hoof (lower rear legs) was inspected for L scoring. Udder and lower legs of study animals were compared with the model animals depicted in photos on the scoring sheet and given a score based on the following categories: Cows were scored on a 5-point cleanliness scale (1=very clean to 5=very dirty). Scores were recorded and determined by one individual throughout the entire study.

Determination of subclinical mastitis with EC and CMT

Each cow entering the milking parlor was subjected to clinical examination by visual inspection, and palpation of the udder, besides that physical examination of the milk secreted from each mammary gland was expressed onto a black plate for detection of gross abnormalities. Furthermore, in farm I, a total of 108 cows was firstly investigated during the milking process at each point for the determination of the prevalence of subclinical mastitis through an automatically computerized digital built-in conductivity meter in parlor milk lines at each point (Fullwood Packo Ltd, United Kingdom) as recommended by kitchen (1981), then in case of EC positive alarm, the CMT screening was applied as described below. While at farm II, 24 cows (96 quarters) in total were screened by CMT according to the guidelines described by Schalm *et al.* (1971) using the Kerba test (Albert Kerbl GmbH Felizenzell 984428 Duchbach, Germany).

Cows were considered positive for subclinical mastitis (SCM) if they had readings of 1, 2 and 3, whereas negative and trace were taken as negative. A cow was considered mastitis positive if at least one of the quarters was CMT positive.

Assessment of BMT quality

Collection of samples

Approximately three samples of 100 mL milk were aseptically collected from each farm, per each visit from the top of cool-

ing tanks after agitation into labeled and sterilized screw-capped plastic cups, then the 1st sample was transported in an ice box on the same day to the laboratory of animal reproduction research institute, Giza for SCC, and the other two samples were transported to the laboratory of food hygiene and control (milk hygiene), Faculty of Veterinary Medicine, Mansoura University to carry out chemical and bacteriological evaluation.

Organoleptic analysis of BMT

Organoleptic analysis was carried out by sensory testing according to Draaiyer *et al.* (2009), and by using the normal senses of smell, sight, and taste to determine the gross milk quality through evaluation of varied organoleptic parameters like flavor, body/texture, color/appearance, taste, and overall acceptability of the milk samples.

Determination of SCC

Somatic cells in BMT samples were counted using Lactoscan SCC compact® (Milkotronic Ltd., Bulgaria) as recommended by the manufacturer's instruction. Briefly, after warming of milk sample to 40°C and thereafter cooling down to 20-25°C, milk was stirred thoroughly with a mini vortex mixer (Four E's Scientific company, China). Then 100 μ L of the stirred sample was added into a micro-tube containing Sofia green liquid dye. The tube then was closed and stirred several times, then, 8 μ L of milk solution was pipetted into the LACTOCHIP at an angle of approximately 80° to the filling opening in a semicircular shape, and the chip was placed in the lactochip chamber, and reading was taken.

Chemical characteristic evaluation

The milk components of fat, protein, solid not fat (SNF), and milk pH were evaluated using the automatic milk analyzer Lactoscan MCCW (Milkotronic Ltd, Bulgaria) according to the manufacturer's instruction. In addition, the titratable acidity was determined according to Draaiyer *et al.* (2009).

Microbiological analysis

The microbiological quality of BMT was assessed through the determination of TBC per mL of milk according to International Organization for Standardization ISO 4833-2 (ISO, 2013).

Statistical analysis

Descriptive data of two farms, management practices, and the prevalence of subclinical mastitis by CMT and EC were statically analyzed using Microsoft software 2016, while the data for udder and leg hygiene score, and BMT quality assessment and the difference between the two farms were done using SPSS 15 by T-test (Independent Samples).

RESULTS

Farm I showed better evaluation based on the HACCP principles approach for the adoption of farming management practices to control most risk factors and critical points associated with milk production than farm II by 66.19% (47 points from 71) while both farms were the same in the rest of variables by 33.80% (24 points from 71), as shown in Table 1.

Hygiene scores for cows (one and two) in farm I, were high 24 ± 4.47 and 32.00 ± 7.71 (21.13% and 28.15% respectively) com-

pared to farm II 9.20 \pm 3.11 and 31.80 \pm 6.18 (8.59% and 29.49%). On contrary, the scores (three and four) were lower in farm I, 55.00 \pm 6.71 and 2.40 \pm 1.67 (48.64% and 2.08%, respectively) than in farm II, 62.40 \pm 2.70 and 3.80 \pm 1.64 (58.36%, and 3.56%, respectively) and both farms were free of cows with score five with no significant variation for all as illustrated in Table 2.

Based on clinical examination, it has been found that both farms showed no evidence of mastitis. Regarding subclinical mastitis determination, the EC in the farm I revealed an alarm for 2 animals (1.85%) and by applying the CMT screening test negative results (0-200.000 total cell count) were obtained. While in farm II, the EC was not performed, and the detection of subclinical mastitis depended only on CMT. The results reported positive quarters by 6.25% ranging from scale 1 (weak positive which represents 500.000–1.500.000 SCC) to strong positive (over 5000000) as shown in Table 3.

The sensory and visual inspection of BMT for both farms were the same. The milk showed no evidence of abnormal odor, color (reddish color) or flavor (salty flavor), no excessive foaming, no floating debris or impurities, and no large clots

Table 4 illustrated the evaluation of BMT chemical properties (fat, protein, SNF, titratable acidity, and pH). The obtained results demonstrated a significant variation (p<0.05) of BMT fat, protein, and SNF parameters between the two farms. Percentage of BMT fat, protein, and SNF parameters were 3.61 ± 0.21 , 3.22 ± 0.06 , and 8.92 ± 0.06 , respectively for farm, I while, for farm II was 4.18 ± 0.40 , 2.98 ± 0.26 , 8.22 ± 0.48 , respectively. These results complied with Egyptian Standards (2005) for fat and SNF in both farms (not less than 3%, 8.25%). Also, the protein amount in BMT of farm I follow the Egyptian Standards (not less than 3.2%), meanwhile, the results for farm II were below the normal range.

Analyses of titratable acidity were 0.16 ± 0.019 and 0.15 ± 0.02 in farm I, and farm II, respectively. These results met the normal standard as mentioned by (Schmidt *et al.*, 1996) which ranged from (0.14 to 0.17%). While pH value of BMT was 6.45 ± 0.26 and 6.57 ± 0.24 in the farm I and farm II, respectively. slightly below the normal range (6.6 to 6.8) in both farms. There was no significant variation in the mean value of two parameters (titratable acidity and pH) between the BMT of the two farms (p=0.928, 0.502) (Table 4).

Total bacterial count in the BMT of the two farms were $(3.60 \times 10^4 \pm 3.44 \times 10^4 \text{ and } 1.06 \times 10^5 \pm 3.27 \times 10^4)$ in farm I and farm II, respectively., both farms were within the normal range. It was very lower in farm I than farm II with no significant variation at p = 0.656 (Table 4).

Somatic cell count of the BMT was 53.33 ± 33.81 and 152.93 ± 67.92 in farm I and farm II, respectively. There was a significant variation (p=0.016) in farm I than in farm II (Table 4).

DISCUSSION

The evaluation of the applicability of quality control programs like good farming practice and HACCP on dairy farms revealed that the HACCP-based approach would yield the best results in the context of animal health, animal welfare, and food safety (Lievaart et.al, 2005).

As described in Table 1, it was possible to realize that farm I was more likely to adopt more milking management practices based on HACCP approaches than farm II adapted conventional methods

The optimal cow cleanliness is a major indicator of welfare (Ellis *et al.*, 2007), considered one of the critical points influencing microbial contamination of milk (Bava *et al.*, 2011), subclinical intramammary infection rate and SCC (Schreiner and Ruegg, 2003). Indirect screening tests such as CMT and EC could be used as reli

Table 1. Descriptive difference in of farm management practices applied by the two examined farms

CCP	Control measure/corrective	v	Application of control measure/corrective action					
cer	action	•	Evaluation variable	Farm I	Farm II	applica- tion		
	Follow up to date records promptly.	v1	Follow up to date records promptly	yes		Both farm		
				Automatic, computerized using different				
	Check animal and replace any lost tags.	v2	system of records	dairy programs Manually in paper records	Manually in paper records.	Farm I		
	uny iost ings.	v3	cow identification	Automatic system using electronic ear tag.	Plastic ear tags.	Farm I		
		v4	No of milking animals	360	210	Farm I		
		v5	Breed Records Register / breed	Dairy comb program / Holstein and crossbreeds.	Paper records / Holstein and crossbreeds.	Farm I		
Animal traceability		v6	Cattle History - Pedigree - Produc- tion traits records	yes		Both farm		
,		v7	Mean age of milking cows/year	4 - >6	$6 \leq$	Farm I		
		v8	Milk yield of farm / kg /day	11000 Kg	5800 Kg	Farm I		
		v9	Parity	3- 3.5	4	Farm I		
		v10	working Team	Veterinarian, 2 agronomists, technical director, administrative manager, dairy, breeding, animal feeding workers).	Full time agronomist, 2 educated supervisor, dairy, breeding, animal feeding workers	l Farm I		
		v11	Well educated, experienced and trained workers	Yes	No	Farm I		
		v12	Rate culling	\leq 5%	≥7%	Farm I		
		v13	Culling causes	Financial issues.	Health problems and financial issues	Farm I		
	Supplying balanced ration.		Nutrition system	Totally Mixed Rations		Both farm		
	Number and methods of feed preparation and serving	v15	Preparation and serving rate /day	4-5 times/day	3 times	Farm I		
	Use feed according to manufacturers' instructions.	v16	serving methods	Served by mixer wagon free of rust, metal particles, strange bodies, smell, mold etc.)		Both farm		
	Store properly.	v17	Ration replacement rate/day	Twice	Once	Farm I		
Water and		v18	feeding troughs made of	Concrete	Ceramics	Farm I		
feeding systems	For water and feed troughs: Ensure that they are clean, no waste, rust, metal par- ticles, strange bodies, bad smell, mold, material they made from etc.).	v19	Optimal feeding troughs	yes	No (Sharp angles, with multiple thin	Farm I		
		v20	Regular cleaning of feeding troughs	Yes	cracks)	Farm I		
		v21	water troughs made of	steel	Concrete covered by ceramics.	Farm I		
		v21 v22	Number and size of water troughs	Multiple, small size.	Low numbers, large size.	Farm I		
		v23	source water supply	Fresh clean ta		Both farm		
	Avoid over stocking	v24	Type of animal yard	Open yard				
	Optimal floor yard and bedding material.	v25	area assigned to each cow $(m^2)/$	More than 30 m ²	25- 30 m ²	Both farm Farm I		
	Cleaning/disinfection		cow	(32 m ²)	(25 m ²)			
	Proper housing and venti- lation	v26	Shadow area assigned to each cow $(m^2)/cow$	8 m ²	6 m ²	Farm I		
Animals housing-clear	Avoid animal waste build up.	v27	Ventilation	Optimal (air fans – sprinkle shower system).	Good (air fans system).	Farm I		
livestock - pathway to	Vermin-insect control.	v28	Floor yard	For animal husbandry: concrete / for bedding: concrete floors with sand bedding				
milking par- lor -waiting area	Organization of animal easy movement.	v29	Waste management rate	Optimal (3 times/day and increase in demand by scrubbing using tractor in central way).	manually according to responsi- ble worker's vision.	Farm I		
	Appropriate waiting condi- tions with no excessive time	v30	Vermin - insect control	yes		Both farm		
	aons with no excessive time	v31	Pathway between the milking parlor and animal yard	Straight – cleaned with	h long distance.	Both farm		
		v32	Waiting area	Optimal, supported by water spraying cleaning system for animals and drying by storm fans.	No additional supporting system	. Farm I		
		v33	Animals Overstocking in milking parlor	Excellent (crowded, organized, easy movement in short time).	Good (not crowded, need manu- al interfering, taking long time).	Farm I		

	Continue					
	Milking machines hygiene, liner quality, segregation/ cluster disinfection and water stripping.	v34	Milking parlor shape.	Herring	Both farm	
	Washing, drying, fore milking, pre-dipping.	v35	Milking parlor Floor	Concrete supported by clean rubber mats.	Concrete.	Farm I
	Post milking teat disin- fection.	v36	No of milking point/parlor	18	16	Farm I
		v37	No of cows/each point/day	60	38	Farm I
		v38	Type of milking techniques	Computerized with (automat- ic identification, electrical conductivity, take off, back flush system).	Manual conventional system	Farm I
		v39	Milking at fixed time	yes		Both farm
		v40	Frequency of milking for each cow/day	3 time/o	lay	Both farm
		v41	No of workers/parlor	2+1 (supervisor)	4 + 1 (supervisor)	Farm I
		v42	Hand washing	yes		Both farm
Milking		v43	Wearing clean clothes, gloves, boots	yes		Both farm
hygiene		v44	Milking operation consumed time/min	From 9-10	From 13-14	Farm I
		v45		30 + 40 delay	90	Farm I
			Pre milking preparation time/sec/cow		90	
		v46	Discard first milk flow	yes		Both farm
		v47	Examination for detection of mastitis/ subclinical mastitis	Yes (per session).	Yes (once per week).	Farm I
		v48	Methods of examination	Clinical investigation and electrical conductivity.	Clinical investigation and CMT.	Farm I
		v49	Pre milking preparation of udder and teats	yes		Both farm
		v50	The method of pre milking preparation of udder and teats	Teat scrubber (cholorine dioxide) all in one.	Manual washing - dry- ing with tissue - iodine dipping.	
		v51	Attached Time consumed per milking operation / min	3 min and 10 sec (comput- erized).	5 min	Farm I
		v52	Post milking treatment of udder and teats	yes		Both farm
		v53	The method of post milking treatment of udder and teats	Iodine dipping or chlorexidin using teat cup.	Iodine dipping (manual prepared) using teat cup.	Farm I
		v54	Back flushing / point	Yes	No	Farm I
		v55	The disinfection products used	Disinfection through back flush installation by Circo flush PE 15 n (GEA).	Not available.	Farm I
Milking hygiene		v56	Streamed floor with clean water after milking	yes		Both farm
		v57	Milking time of sick cows	At the end milking, separate t from the collect		Both farm
		v58	Following the manufacturer's guidelines strictly for milking machines		Both farm	
	Keep milk preserved in low	v59	Rapid cooling system	Yes	No	Farm I
	temperature. Keep tank temperature as low as possible.	v60	The temperature at which milk is being cooled before arrived to cooling tanks.	Milk cooled suddenly to 3-4 °C.	Not available.	Farm I
	Periodical analysis of milk for quality assessment, bac- teriological and chemical composition etc.	v61	Cooling tanks No	2	1	Farm I
Receiv- ing and storing of milk	v62		Storing temperature of cooling tank	3.5 °C/tank (during milking operation).2.1 °C/tank (full loaded).	13 °c (during milking operation).	Farm I
		v63	Technique of CIP (cleaning in place) system	cold water - warm water (85°C) + alkaline detergent - warm water (85°C) + acidic detergent ")- cold water for rinsing - cold water + sanitiz- er " (GEA)	cold water- warm water (90°C) + alkaline deter- gent (NaOH industrial brand) - warm water (90°C) + acidic deter- gent (Nitric acid 0.5% industrial brand)-rins- ing without sanitizer	

Table 1. Continue		
	v64	detergents type
	v65	Rate of parlor cleaning by alka

v65Rate of parlor cleaning by alkaline detergentsOne time/each milking session.Both farmv66Rate of cleaning parlor by acidic detergentThree times/week.Both farmv67Source of cleaning waterClean fresh tap waterBoth farmv68Technique of cleaning and sanitationWashing by cold water then warm water with detergent then rinse with cold water then cold water with sanitizer (Automatic dosing).Washing by cold water then warm water with detergent then rinse with cold water (Manually). cold water (Manually).Farm Iv69Frequency of tank cleaningAutomatic after each evacuationBoth farmv70Type of disinfectants used in farm"GEA" several disinfectants for (pre and post) dipping, alkaline+ Acidic detergent for cleaning (milking installations, parlors and backflush system)Nitric acid as acidic detergent for cleaning.Farm Iv71Additional preparation in Farmquality assessment portable toolsNot available.Farm I	v64	detergents type	Liquid.	Liquid. Powder (nitric acid and NaOH) 0.5%.				
v67Source of cleaning waterClean fresh tap waterBoth farmv68Technique of cleaning and sanitationWashing by cold water then warm water with detergent then rinse with cold water then cold water with sanitizer (Automatic dosing).Washing by cold water then warm water with detergent then rinse with cold water then cold water with sanitizer (Automatic dosing).Washing by cold water then warm water with detergent then rinse with cold water then cold water with sanitizer (Automatic dosing).Washing by cold water then warm water with detergent then rinse with cold water (Manually).Farm Iv69Frequency of tank cleaningAutomatic after each evacuation (pre and post) dipping, alkaline+ Acidic detergent for cleaning (milking installations, parlors and backflush system)Nitric acid as acidic detergent for cleaning.Farm I	v65	Rate of parlor cleaning by alkaline detergents	One time/ead	Both farm				
v68Technique of cleaning and sanitationWashing by cold water then warm water with detergent then rinse with cold water then cold water with sanitizer (Automatic dosing).Washing by cold water then warm water with detergent then cold water (Manually).Farm I cold water (Manually).v69Frequency of tank cleaningAutomatic after each evacuation (bre and post) dipping, alkaline+ Acidic detergent for cleaning (milking installations, parlors and backflush system)Nitric acid as acidic detergent for cleaning.Both farm	v66	Rate of cleaning parlor by acidic detergent	Three	Three times/week.				
v68Technique of cleaning and sanitationwarm water with detergent then rinse with cold water then cold water with sanitizer (Automatic dosing).Washing by cold water then warm water with detergent then rinse with cold water then cold water with sanitizer (Automatic dosing).Washing by cold water then warm water with detergent then rinse with cold water (Manually).v69Frequency of tank cleaningAutomatic after each evacuation NaoH as Alkaline detergent for cleaning.Both farmv70Type of disinfectants used in farm"GEA" several disinfectants for (pre and post) dipping, alkaline+ Acidic detergent for cleaning (milking installations, parlors and backflush system)Nitric acid as acidic detergent for cleaning.Farm IIodine for (pre and post) dippingIodine for (pre and post) dippingIodine for (pre and post) dippingFarm I	v67	Source of cleaning water	Clean fi	resh tap water	Both farm			
v70 Type of disinfectants used in farm w70 Ty	v68	Technique of cleaning and sanitation	warm water with detergent then rinse with cold water then cold water with sanitizer (Automatic	water with detergent then rinse with	Farm I			
v70 Type of disinfectants used in farm "GEA" several disinfectants for (pre and post) dipping, alkaline+ Acidic detergent for cleaning (milking installations, parlors and backflush system) Iodine for (pre and post) dipping	v69	Frequency of tank cleaning	Automatic af	ter each evacuation	Both farm			
v70 Type of disinfectants used in farm (pre and post) dipping, alkaline+ Acidic detergent for cleaning (milking installations, parlors and backflush system) Nitric acid as acidic detergent for Farm I cleaning. Iodine for (pre and post) dipping				6				
	v70	Type of disinfectants used in farm	(pre and post) dipping, alkaline+ Acidic detergent for cleaning (milking installations, parlors	6	Farm I			
v71 Additional preparation in Farm quality assessment portable tools Not available. Farm I				Iodine for (pre and post) dipping				
	v71	Additional preparation in Farm	quality assessment portable tools	Not available.	Farm I			

CCP: critical control point; V: variable; CMT: California mastitis test

Table 2. Udder and leg hygiene score of both examined farms

Visit			Score number and description*										
number			1			2		3		4		5	
			1 2	/ free of dirt %)	Very littl	e dirt (%)	Slightly	dirty (%)	2	ered by dirt %)	· ·	y dirty with n dirt (%)	
			Farm I	Farm II	Farm I	Farm II	Farm I	Farm II	Farm I	Farm II	Farm I	Farm II	
1	108	96	22 (20.37)	7 (7.29)	34 (31.48)	24 (25.00)	50 (46.30)	62 (64.58)	2 (1.85)	3 (3.13)	0 (0)	0 (0)	
2	126	104	25 (19.84)	12 (11.54)	32 (25.40)	28 (26.92)	64 (50.79)	58(55.77)	5 (3.97)	6 (5.77)	0 (0)	0 (0)	
3	99	112	23 (23.23)	13 (11.61)	19 (19.19)	32 (28.57)	56 (56.57)	65 (58.04)	1 (1.01)	2 (1.79)	0 (0)	0 (0)	
4	126	112	31 (24.60)	8 (7.14)	36 (28.57)	35 (31.25)	58 (46.03)	64 (57.14)	1(0.79)	5 (4.46)	0 (0)	0 (0)	
5	108	112	19 (17.59)	6 (5.36)	39 (36.11)	40 (35.71)	47 (43.52)	63 (56.25)	3 (2.78)	3 (2.68)	0 (0)	0 (0)	
	Mean value (%	ó)	21.13	8.59	28.15	29.49	48.64	58.36	2.08	3.56	0	0	
	Mean±SD		24±4.47	9.20±3.11	32.00±7.71	31.80±6.18	55.00±6.71	62.40±2.70	$2.40{\pm}1.67$	3.80±1.64	$0.00{\pm}0.00$	$0.00{\pm}0.00$	
	P value		0.6	573	0.8	842	0.	085	0.8	371	*	*	

*According to Reneau et al. (2003), ** t cannot be computed because the standard deviations of both groups are 0

Table 3. Detection of subclinical mastitis by electrical conductivity and/or California mastitis test

	Number of examined	No. of positive samples examined		(California r	nastitis test/qu	arter) Score*		Total positive
	animals (quarter)	by electrical conductivity/ animal	None	Trace	1	2	3	(%)
Farm I	108 (432)	2	8					0 (0%)
Farm II	24 (96)	-	5	13	3	2	1	6 (6.25%)

*According to Schalm et al. (1971)

able tests to monitor udder health and hygienic status in general as stated by Saber *et al.* (2017).

In farm II, 6.25% of examined dairy cattle turned out positive in the CMT testing process range from scale 1 (weak positive) to strong positive as shown in Table 4, and compared with the cleanliness and hygienic score of the farm, it was found that mean value percentage for the hygienic condition of udder and legs was low (8.59%), in contrast in farm I, cow screened by CMT turned out negative with high hygienic score condition for udder and legs (21.13%), The result obtained in this study was similar to Reneau et. Al. (2003) and Lamsal (2018) indicating dirty cows had a higher prevalence of subclinical mastitis and clean cows have less.

It was found that the common predisposing factors of milk contamination are related to cows, milking environment, milking equipment, milking personnel, water, and transportation (Mbabazi 2005). The major key sources of milk contamination are soiled animals (especially teats and udder) by feces, bacterial infection due to poor milking practices, poor personnel hygiene, bedding materials, insects, inadequate cleaning and disinfection for milking equipment (including bulk milk tanks), inadequate teats disinfection pre milking and post milking, failure to detect any abnormality in milk as blood; clots; foreign bodies, failure to detect subclinical mastitis, poor storage conditions (Bekuma and Galmessa, 2018). Soiled animals with feces, contaminated floors, wet bedding, poor ventilation, high stocking density, and hot and humid climate can promote growth have a deceive effect on udder health and increase exposure to mastitis pathogens resulting in higher occurrence of mastitis (Cheng and Han, 2020).

The availability of more than 20% of cows with udder hygiene scores 3 and 4 was an indicator of increased risk of mastitis in the herd and obtaining low-quality milk. Somatic cell count in milk

Table 4. Chemical (fat, protein, SNF, pH and titratable acidity) and microbiological (TBC and SCC) properties of bulk milk tank of both examined farms (mean ±SD)

	Farm	No. of sample	Mean±SD	P value	
$E_{at}(0/)$	Farm I	15	3.61±0.21	0.034	
Fat (%)	Farm II	15	4.18±0.39		
Durate in (0/)	Farm I	15	3.22±0.06	0.001	
Protein (%)	Farm II	15	$2.98{\pm}0.26$	0.001	
SNF (%)	Farm I	15	8.92±0.06	0	
	Farm II	15	8.23±0.48	0	
TT.	Farm I	15	6.45±0.26	0.502	
pH	Farm II	15	6.57±0.24	0.502	
T'4 4 1 1 1 1 1	Farm I	15	$0.16{\pm}0.02$	0.028	
Titratable acidity	Farm II	15	$0.15{\pm}0.02$	0.928	
	Farm I	15	$3.60 \times 10^{4} \pm 3.44 \times 10^{4}$	0.656	
TBC (CFU/ml)	Farm II	15	1.06×10 ⁵ ±3.27×10 ⁴	0.656	
SCC (v103)	Farm I	15	53.33±33.81	0.016	
SCC (×10 ³)	Farm II	15	152.93±67.92	0.016	

SNF: Solid nonfat; TBC: Total bacterial count; CFU: Colony forming unit; SCC: Somatic cell count

depended largely on the maintenance of bedding and the farm hygiene rather than the farm capacity and the rearing technology (Mitev *et al.*, 2013)

In this study, significant differences in the mean value of milk composition were found between the two farms. Most of the analyzed milk samples met the required Egyptian standards for chemical composition: fat, and SNF percentage in both farms while protein percentage was found to be below Egyptian standards in farm II and contrast farm I, although the use of similar breeds of cattle and similar feed management strategies. These findings are not similar to those reported by Migose *et al.* (2018) and Nyokabi *et al.* (2021) who suggested that farming practices could affect composition besides breeds and feed management strategies.

Titratable acidity is defined as a measure of freshness and bacterial activity in milk. When the milk is left for a while, the bacteria will proliferate by utilizing lactose to convert it to lactic acid, thereby increasing the acidity and decreasing the pH value. This acidity is said to be developed or real titratable acidity (O'Connor, 1994; Vishweshwar *et al.*, 2005). In this study titratable acidity was within the normal standard for both farms while pH was slightly lower than normal ranges (6.6–6.8) in both farms, there was no significant difference between the two farms as shown in Table 4. Milk composition is influenced by factors that are specific to a cow and its environment. These factors are breed, age, health status, stage of lactation, diet; intensity of management; milking interval; and ambient environmental temperature and seasonality, which influences feed availability (Chen *et al.*, 2014; Schwendel *et al.*, 2015; Swathi and Kauser, 2015).

In the current study, it was found that the mean value of SCC was significantly lower in farm I ($53.33\pm33.81\times10^3$) than farm II ($152.93\pm67.92\times10^3$). The results obtained agree with other reports (Elmoslemany *et al.*, 2009; Daneluz *et al.*, 2020; Mihajlović *et al.*, 2022), which refer to these managements as essential to milk microbial count. As the number of management practices with the implementation of corrective and preventive measures increases, the reduction of SCC and TBC and therefore significant improvement of milk quality will be achieved.

CONCLUSION

Improving milk quality at all stages of the food chain is a very important point in food safety. The start point of milk quality improvement is the dairy farm level, therefore, following and implementation of appropriate milking management practices from producer to the consumer pathing through distributer are necessary. Furthermore, maintaining the hygiene level and sanitary quality of raw bovine milk will support maintaining TBC and SCC at a low level. Additionally, the raw milk must be continuously monitored to maintain the required milk quality standard and ensure good animal health, profitability, and food safety.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

- Abebe, R., Hatiya, H., Abera, M., Megersa, B., Asmare, K., 2016. Bovine mastitis: prevalence, risk factors and isolation of Staphylococcus aureus in dairy herds at Hawassa milk shed, South Ethiopia. BMC Veterinary Research J. 12, 270.
- Bardhan, D., 2013. Estimates of economic losses due to clinical mastitis in organized dairy farms. Indian Dairy Science J. 66, 168-172.
- Bava, L., Sandrucci, A., Tamburini, A., Brasca, M., Vanoni, L., Zucali, M., 2011. Milk hygiene at the farm: effects of management and environmental factors. Scienza e Tecnica Lattiero-casearia 62, 75-84.
- Beekhuis-Gibbon, L., Whyte, P., O'Grady, L., More, S.J., Doherty, M.L., 2011. A HACCP-based approach to mastitis control in dairy herds. Part 1: Development. Irish Veterinary J. 64, 1-9.
- Bekuma, A., Galmessa, U. 2018. Review on hygienic milk products practice and occurrence of mastitis in cow's milk. Agricultural Research & Technology. Open Access J. 18, 1-11.
- Chen, B., Lewis, M.J., Grandison, A.S., 2014. Effect of seasonal variation on the composition and properties of raw milk destined for processing in the UK. Food Chemistry 158, 216-223.
- Cheng, W.N., Han, S.G. 2020. Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments-A review. Asian-Australasian Journal of Animal Sciences 33, 1699-1713.
- Codex Alimentarius Commission, 2003. Recommended International Code of Practice: General Principles of Food Hygiene, CAC/RCP 1–1969, Rev. 4–2003. Food and Agriculture Organization, Rome.
- Daneluz, M.O., Canever, M.D., Lima, H. G.D., Bermudes, R.F., Ribeiro, F.G., 2020. Effectiveness of milking management practices for SCC and TBC levels in milk. Revista Brasileira de Zootecnia 49, e20190130, 2020.
- Dipanjali, K., Keshab, B., Yashawant, S., 2009. Management: a key to prevention of mastitis. Indian Dairyman J. 61, 29-33.
- Draaiyer, J., Dugdill, B., Bennett, A., Mounsey, J., 2009. Milk testing and payment systems. Resource book: a practical guide to assist milk producer groups. Food and Agriculture Organization of the United Nations.
- Egyptian Standards, 2005. Milk and milk products, part 1: raw milk. Egyptian standards 154-1/2005, Egyptian Organization for Standardization and Quality, Cairo, Egypt. https://www.eos.org.eg/en/

standard/2484

- Ellis, K.A., Innocent, G.T., Mihm, M., Cripps, P., McLean, W.G., Howard, C.V., Grove-White, D., 2007. Dairy cow cleanliness and milk quality on organic and conventional farms in the UK. Dairy Research J. 74, 302-310.
- Elmoslemany, A.M., Keefe, G.P., Dohoo, I.R., Jayarao, B.M., 2009. Risk factors for bacteriological quality of bulk tank milk in Prince Edward Island dairy herds. Part 2: Bacteria count-specific risk factors. Dairy Science. J. 92, 2644-2652
- Foroutan, A., Guo, A.C., Vazquez-Fresno, R., Lipfert, M., Zhang, L., Zheng, J., Wishart, D.S., 2019. Chemical composition of commercial cow's milk. Agricultural and Food Chemistry J. 67, 4897-4914.
- Griffith, C.J., 2000. Food safety: Where from and where to? British Food J. 108, 6-16.
- Halasa, T., Nielen, M., De Roos, A.P.W., Van Hoorne, R., de Jong, G., Lam, T.J.G.M., Hogeveen, H., 2009. Production loss due to new subclinical mastitis in Dutch dairy cows estimated with a test-day model. Dairy Science J. 92, 599-606.
- Hemme, T., Otte, J., 2010. Status and prospects for smallholder milk production: a global perspective. Food and Agriculture Organization of the United Nations (FAO). ISBN: 978-92-5-106545-7.
- ISO (International Organization for Standardization), 2013. Microbiology of the food chain – Horizontal method for the enumeration of microorganisms. International Organization for Standardization (ISO 4833-2:2013). https://www.iso.org/standard/53728.html
- Jan, T., Yadav, K.C., Borude, S., 2016. Study of HACCP implementation in milk processing plant at Khyber Agro Pvt. Ltd in Jammu & Kashmir. Food Process Technol. J. 7, 2.
- Joshi, S., Gokhale, S., 2006. Status of mastitis as an emerging disease in improved and periurban dairy farms in India. Annals of the New York Academy of Sciences J. 1081, 74-83.
- Kitchen, B.J., 1981. Bovine mastitis: milk compositional changes and related diagnostic tests. Dairy Research J. 48, 167-188.
- Lamsal, P., 2018. Cattle Hygiene Status and Its Relation with Subclinical Mastitis: A Study in Commercial Farms in Rampur, Nepal. International Journal of Applied Sciences and Biotechnology. 6, 252-254.
- Lievaart, J.J., Noordhuizen, J.P.T.M., Van Beek, E., Van der Beek, C., Van Risp, A., Schenkel, J., Van Veersen, J., 2005. The Hazard Analysis Critical Control Point's (HACCP) concept as applied to some chemical, physical and microbiological contaminants of milk on dairy farms. A prototype. Veterinary quarterly. 27, 21-29.
- Mbabazi, P., 2005. Milk industry in Uganda, a textbook of the diseases of cattle, horses, sheep, pigs, and goats, meeting proceedings. 1st (ed), Fountain Publishers Kampala, medicine. 10th (ed), pp. 11.
- Mehta, B.M., 2015. Chemical composition of milk and milk products. In Handbook of food chemistry. Springer, Berlin, Heidelberg, pp. 511-553.
- Migose, S.A., Bebe, B.O., De Boer, I.J.M., Oosting, S.J., 2018. Influence of distance to urban markets on smallholder dairy farming systems in Kenya. Tropical Animal Health and Production. 50, 1417-1426.
- Mihajlović, L., Ćincović, M., Nakov, D., Stanković, B., Miočinović, J., Hristov, S., 2022. Improvement of hygiene practices and milk hygiene due to systematic implementation of preventive and corrective measures. Acta Veterinaria. 72, 76-86.
- Mitev, J., Gergovska, Z., Miteva, T., Vasilev, N., Uzunova, K., Penev, T., 2013. Effect of the Degree of Udder Contamination in Dairy Cows on the Somatic Cell Count in Milk. Fac. Vet. Med. Istanbul Univ J. 39, 76-83.
- Muehlhoff, E., Bennett, A., McMahon, D., 2013. Milk and dairy products in human nutrition. Food and Agriculture Organization of the United Nations (FAO), , Rome. E-ISBN: 978-92-5-107864-8

- NRC (National Research Council), 2001. Nutrient requirements of dairy cattle: 2001. 7th Edition, National Academies Press.
- Nyokabi, S., Luning, P.A., de Boer, I.J., Korir, L., Muunda, E., Bebe, B.O, Oosting, S.J. 2021. Milk quality and hygiene: Knowledge, attitudes, and practices of smallholder dairy farmers in central Kenya. Food Control. 130, 108303.
- O'Connor, C.B., 1994. Rural Dairy Technology ILRI Training Manual 1. ILRI (International Livestock Research Institute), Addis Ababa, Ethiopia, pp. 133
- Omer, R.S., Abdelgadir, A.E., 2014. Application of hazard analysis critical control point (HACCP) system in dairy farms in Khartoum State, Sudan. Cell and Animal Biology J. 8, 86-94.
- Owusu-Kwarteng, J., Akabanda, F., Agyei, D., Jespersen, L. 2020. Microbial safety of milk production and fermented dairy products in Africa. Microorganisms J. 8, 752.
- Parekh, T.S., Subhash, R., 2008. Molecular and bacteriological examination of milk from different milk animals with special reference to Coliforms. Current Res. in Bacteriol. J. 1, 56 - 63.
- Rathod, P., Shivamurty, V., Desai, A.R., 2017. Economic losses due to subclinical mastitis in dairy animals: A study in Bidar district of Karnataka. The Indian Journal of Veterinary Sciences and Biotechnology 13, 37-41.
- Reneau, J.K., Seykora, A.J., Heins, B.J., Bey, R.F., Farnsworth, R.J., 2003. Relationship of cow hygiene scores and SCC. In annual meeting-national mastitis council incorporated National Mastitis Council; 1999, Vol. 42, pp. 362-363.
- Saber, A., Hassan, M., El Nabtiti, A., Hassan, A., Mansour, S., 2017. Evaluation of Field Techniques to Diagnose Early Subclinical Mastitis in Relation to Hygiene Score in a Buffalo Farm. Catrina: The International Journal of Environmental Sciences. 16, 53-60.
- Schalm, O.W., Carrol, E.J., Jain, N.C., 1971. Bovine Mastitis. Lea Febiger, Philadelphia, USA, pp. 360.
- Schmidt, K.A., Stupar, J., Shirley, J.E., Adapa, S., Sukup, D., 1996. Factors affecting titratable acidity in raw milk. Dairy Day, 1996, Kansas State University, Manhattan, KS, 1996, Kansas Agricultural Experiment Station. pp: 60-62.
- Schreiner, D.A., Ruegg, P.L., 2003. Relationship between udder and leg hygiene scores and subclinical mastitis. Dairy Science J. 86, 3460-3465.
- Schwendel, B.H., Wester, T.J., Morel, P.C.H., Tavendale, M.H., Deadman, C., Shadbolt, N.M., Otter, D.E., 2015. Invited review: Organic and conventionally produced milk .an evaluation of factors influencing milk composition. Dairy Science. J. 98, 721-746.
- Swathi, J.K., Kauser, N., 2015. A study on adulteration of milk and milk products from local vendors. International Biomedical and Advance Research J. 6, 678-681.
- Velázquez-Ordoñez, V., Valladares-Carranza, B., Tenorio-Borroto, E., Talavera-Rojas, M., Varela-Guerrero, J.A., Acosta-Dibarrat, J., Pareja, L., 2019. Microbial contamination in milk quality and health risk of the consumers of raw milk and dairy products. In Nutrition in Health and disease-our challenges Now and Forthcoming time. London, UK: IntechOpen.
- Vishweshwar, K., Krishnaiah, N., Sunder, P.R., 2005. Quality control of milk and processing. Ed. Reddy, S. Andra, Pradesh, India.
- Walker, G.P., Dunshea, F.R., Doyle, P.T., 2004. Effects of nutrition and management on the production and composition of milk fat and protein: A review. Aust. Agric. Res. J. 55, 1009-1028.