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Introduction

Feed is a crucial factor of animal health and productivity (Mironova 
et al., 2021). In the recent years, the livestock industry has encountered 
significant challenges regarding shortage of quality feed availability. Ad-
dressing this issue require the integration of both conventional and novel 
strategies approaches, including the fermentation technique enhancing 
feed functionality through modulation of the gut microbiota.

To promote sustainable and cost-effective livestock feed, agro-in-
dustrial by-products such as  cassava pulp, banana	peel meals, and rice 
bran (Sugiharto et al., 2018), corn cobs, rice straw, sugarcane bagasse, 
and palm kernel cake (Blandino et al., 2016; Sadh et al., 2018) have been 
investigated. The low nutritional value of these feeds makes them difficult 
for animals to digest (Blandino et al., 2016). Among these by-products, 
cassava cobs an underutilized residue (Manihot esculenta) and its pro-
cessing has recently gained attention. Despite its abundance, the applica-
tion in animal feed is limited due to its low protein and high fiber content 
(Su and Chen, 2020). Cassava cobs have high carbohydrate and ligno-
cellulosic fiber content, mostly cellulose, hemicellulose, and lignin (Aka-
racharanya et al., 2011; Chirinang and Oonsivilai, 2018), and minor pro-
tein, pectin, lipids, and calcium contents. However, a major drawback of 
cassava-based by-products is the presence of hydrogen cyanide (HCN), 
an anti-nutritional compound known to inhibit enzymatic function, caus-
ing neurological disturbances and toxicity in livestock (Soto-Blanco  and  
Górniak, 2010). HCN toxicity may compromise digestive and organ func-
tion animals, but these effects can be reduced through fermentation, 
which has been reported to decrease anti-nutritional factors and enhance 
nutritional value (Sugiharto and Ranjitkar, 2019; Georganas et al., 2023). 
Fermentation plays a crucial role in reducing cyanide content in cassava 
through multiple mechanisms. Jayanegara et al. (2025) reported that fer-
mentation process creates an acidic environment, inhibiting the enzyme 
responsible for HCN production. Microorganisms involved during fer-
mentation process can breakdown and detoxify cyanide, while the vola-

tility of hydrogen cyanide allows its removal through evaporation (Brüger 
et al., 2020; Qin et al., 2021; Egbune at al., 2023). Lastly, the fermentation 
induce structural alteration in cassava cells may influence the availabil-
ity of cyanogenic compounds (Montagnac et al., 2009). Recent studies 
have demonstrated that fermenting cassava by-product with A. niger can 
increase protein levels and decrease fiber content, thereby improving 
their potential as a livestock feed (Khempaka et al., 2014; Sugiharto et 
al., 2018). During fermentation, the fungus A. niger produces enzymes 
such as α-amylase, glucoamylase, and xylanase which may contribute by 
increasing protein content and modifying physicochemical properties of 
the fermented product (Aliyah et al., 2017).

A. niger, a filamentous fungus recognized for its enzyme-producing 
capabilities, which enhance the nutritional value of cassava cobs. A. niger 
produces a broad range of extracellular enzymes such as amylase, cel-
lulase, pectinase, protease, and phytase (McKelvey and Murphy, 2017), 
which can breakdown complex carbohydrates and proteins, thereby im-
proving feed digestibility (Supe, 2020). Previous studies also confirmed 
that A. niger hydrolyse tannins (Oso et al., 2015). Furthermore, A. niger 
synthesizes organic acids like citric acid, gallic acid, itaconic acid, oxalic 
acid, and gluconic acid, which contribute into breaking down cell walls 
and alter the chemical environment to enhance fermentation efficiency 
(Li et al., 2013; Karaffa and Kubicek, 2019; Hossain et al., 2019). On the 
other hand, citric acid not only inhibits pathogenic microbes, improve 
feed palatability, and modulate acidity to favor beneficial microorganism 
(Seo et al. 2013; Broom, 2015) but also lowers pH value by releasing hy-
drogen ion (H⁺) that help improve the gut environment for the beneficial 
bacteria (Chuang et al., 2007; Latif et al., 2025). Moreover, A. niger also 
produce fructooligosaccharides (FOS), which exhibit significant prebiot-
ic effect by promoting the growth of beneficial gut microbiota, there-
by contributing to improved intestinal health and digestion in animals 
(Roupar et al., 2022; Mahalak et al., 2023). The synergistic effect of citric 
acid and fructooligosaccharides has been shown to significantly improve 
microbial and physiological conditions within the digestive tract, offering 
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feed source for livestock. However, their low protein content and high fiber composition limit their direct ap-
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5% inoculum and 4 days of fermentation. Neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents 
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mentation with A. niger as a viable method to enhance the nutritional quality of cassava cobs, supporting their 
use a functional feed ingredient for sustainable livestock production.
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a promising approach to improve nutritional feed (Zhang et al., 2022; Xu 
et al., 2025). 

The cassava cobs are rich in carbohydrates which serve as an excel-
lent substrate for A. niger that growth optimally at 30–37°C. The fungus 
can effectively ferment the substrate for up to six days if sugar is available 
(Chew and Than, 2021; Li et al., 2022). However, the fermentations success 
depends on inoculum level and duration of fermentation, which influence 
the extent of microbial activity and nutrient transformation.

A. niger improves the nutritional quality of cassava cobs through sol-
id-state fermentation (SSF) by producing hydrolytic enzymes including 
cellulases, xylanases, and lipases that break down fibers and enhance 
nutritional value (Oliveira et al., 2018). It also raises crude protein con-
tent, reduce lignocellulose, produces organic acids and metabolites that 
enhance feed safety and palatability by inhibiting pathogens and detox-
ifying toxins (Zhang et al., 2014; Wang et al., 2018; Cairns et al., 2021).

This study aimed to assess the effectiveness of A. niger level and 
fermentation durations on the nutritional profile of cassava cobs. The 
findings are intended to support the development of cassava cobs as a 
functional and sustainable alternative feed for livestock.

Materials and methods

Study location and design

This in vitro study was carried out at the Feed Technology Laboratory 
and the Animal Nutrition Laboratory, Faculty of Animal and Agricultur-
al Sciences, Diponegoro University, Semarang, Indonesia. The methods 
were adapted by Sugiharto et al. (2018) with modifications. This study 
employed a randomized factorial design with two factors, fermentation 
time (0,2,4 d) and inoculum level A. niger (0%,2.5%,5%). Each treatment 
combination was replicated three times (total 27 experimental units)

Preparation of Aspergillus niger inoculum

The A. niger isolate was rejuvenated on Potato Dextrose Agar (PDA; 
Merck KGaA, Darmstadt, Germany) containing chloramphenicol and in-
cubated at 38°C for 40 hours.  Fungal mycelia were harvested by rinsing 
each plate with 10 mL of sterile distilled water. The resulting suspension 
of fungal was used to inoculated steamed rice (Miyako-PT. Kencana Suk-
ses Gemilang) isolate: rice;1mL:10g and incubated at room temperature 
for 40 hours. Afterward, the culture was sun-dried and ground into pow-
der to producing the fungal inoculum, which had a final concentration of 
3.7x108 CFU/g.

Substrate preparation and fermentation process

Cassava cobs were collected from local farmers near the Tembalang 
Campus. The cassava cobs were washed, chopped, sun-dried, and ground 
to pass through a mesh sieve. The cassava cobs flour was sterilized using 
an autoclave at 121°C for 15 minutes (Utama et al., 2019), then cooled to 
room temperature. Each 150 g portion of dried cassava cob was mixed 
with 0.1% urea and 3% molasses (both dissolved in water) to achieve a 
final moisture content of 40%. The mixture was inoculated with A. niger 
at concentrations of 0, 2.5, and 5% (based on dry matter). Solid-state 
fermentation (SSF) was carried out under aerobic conditions for 0, 2, and 
4 days at room temperature.

Nutritional and data analysis

After fermentation, cassava cob samples were analysed for changes 
in nutritional composition. The measured parameters included proximate 
composition (crude protein, crude fiber), digestible crude protein (DCP), 
neutral detergent fiber (NDF), acid detergent fiber (ADF), digestible NDF 
and ADF, cellulose, hemicellulose, and lignin contents. Data were anal-

ysed statistically to determine the effects of A. niger levels and time of 
fermentation. Standard procedures were followed AOAC, (2019), for prox-
imate analysis and Van Soest et al., 1991) for fiber fraction.

All data were statistically analysed using SPSS version 27. A two-way 
analysis of variance (ANOVA) was conducted to examine the main effects 
and interaction effects between two independent variables: the level of 
Aspergillus niger inoculum and the duration of fermentation. When signif-
icant differences (p < 0.05) were observed, post hoc tests were performed 
to compare means among treatment groups. The results were interpreted 
to determine the optimal combination of fungal concentration and fer-
mentation time for enhancing the nutritional value of cassava cobs. 

Results

Solid state fermentation (SSF) using Aspergillus niger significantly 
altered the chemicals composition of cassava cobs. The most notable 
change occurred at 5% inoculum and 4 days incubation. Fiber content 
decreased 33.10±0.75 to 20.12±0.08, ADF content decrease 95.90±2.08 
to 74.64±1.02, NDF decrease from 94.03±1.22 to 88.64±3.14 (p < 0.05). 
Crude protein content initially peaked at 42.09±0.03% on day 0 but de-
crease to 24.07±6.88 during fermentation at day 4 (p < 0.05). In contrast, 
digestibility crude protein significantly increased, reaching 51.00±0.59 at 
day 4 with 5% inoculum.

Discussion

This study demonstrates that solid-state fermentation (SSF) using A. 
niger improved the nutritional quality of cassava cobs, by reducing fi-
ber fractions and increasing protein content digestibility. The decrease 
in crude fiber, NDF, and ADF content observed at 5% inoculum level and 
4 days incubation indicates effective degradation lignocellulosic. This 
is likely due to the enzymatic activity of A. niger to produce cellulases, 
hemicellulases, and lignin-modifying enzymes (Oso et al., 2015), which 
facilitate the breakdown of complex structural carbohydrates, more di-
gestible form (Pothiraj et al., 2006; Jasani et al., 2016). These structural 
changes are particularly important in improving feed nutrition. Beyond of 
that, in ruminant reducing ADF and NDF enhances microbial degradation 
in rumen, which incrases energy availability. The observed improvement 
in digestible NDF and ADF after fermentation support this, suggesting 
increase microbial utilization.

In addition to fiber degradation, increase in digestible crude protein 
content was observed further indicating nutritional benefit of fermenta-
tion. Although the total crude protein decline during fermentation pro-
cess. This reduction is likely due to protease activity converting complex 
protein into simple compounds such as amino acid and peptides. While 
this may reduce the crude protein value measured by standard methods 
it improves the availability and utilization of nitrogen by the animal (Shi et 
al., 2016; Lacina and Agathos, 2006). The significant increase in digestible 
crude protein at 4 days fermentation support this interpretation 

Consistent with the findings Akinfemi et al. (2009), this study demon-
strated that fermentation improved the digestibility of NDF and digest-
ibility of ADF, indicating enhanced microbial accessibility to previously 
difficult-to-digest fiber components. These improvements are crucial for 
ruminant nutrition, as they increase the energy availability from fibrous 
feed materials. Overall, A. niger effectively altered the chemical composi-
tion of cassava by-product through enzymatic degradation and biomass 
enrichment. The optimal treatment at 5% inoculum with 4 days of fer-
mentation yielded the most favourable nutritional profile, with high di-
gestible protein and reduced lignocellulosic components. These findings 
support the use of fungal solid-state fermentation as a sustainable strat-
egy for improving the quality of agricultural by-products as animal feed.
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Conclusion

A. niger effectively alter the chemical composition of cassava cobs 
through enzymatic degradation and biomass enrichment. The optimal 
treatment at 5% inoculum with 4 days of fermentation yield the most 

favorable nutritional profile, with high digestible protein and reduced 
lignocellulosic components. The results support the use of fungal sol-
id-state fermentation as a sustainable strategy for improving the quality 
of agricultural by-products as animal feed.
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Parameters Aras (%)
Fermentation duration (days) Average

0 2 4

Fiber Content

0 33.10±0.75ᵃ 33.17±0.86ᵃ 32.07±0.08ᵇ 32.78±0.78a

2.5 32.51±0.31ͣᵇ 26.37±0.53ͨ 24.08±0.43ᵈ 27.65±3.79b

5 32.10±0.88ᵇ 24.30±0.06ᵈ 20.12±0.08ᵉ 25.51±5.29c

Average 32.57±0.74a 27.95±4.06b 25.42±5.27c

Crude Protein

0 42.09±0.03a 41.63±0.18a 40.74±0.58c 41.48±0.66a

2.5 39.59±0.24c 38.82±0.31c 37.06±0.56d 38.49±1.17b

5 34.67±0.58e 32.92±0.50f 24.07±6.88g 30.55±6.01c

Average 38.78±3.28a 37.79±3.86a 33.96±8.33b

Digestible Fiber

0 31.18±0.16ᵈᵉ 31.44±0.39ᵈᵉ 31.46±0.28ᵈᵉ 31.36±0.29c

2.5 30.37±0.31ᵉ 34.26±0.04c 36.32±0.19ᵇ 33.65±2.62b

5 31.71±1.21ᵈ 36.32±1.09ᵇ 41.00±0.60ᵃ 36.34±4.11a

Average 31.09±0.86c 34.01±2.20b 36.26±4.14a

Digestible Crude Protein

0 41.24±0.22ᵈᵉ 41.44±0.36ᵈ 41.45±0.31ᵈ 41.37±0.33c

2.5 40.34±0.18ᵉ 44.30±0.04ͨ 46.34±0.15ᵇ 43.66±2.64b

5 41.74±1.22ᵈ 46.54±0.78ᵇ 51.00±0.59ᵃ 46.43±4.08a

Average 41.10±0.87c 44.09±2.25b 46.26±4.15a

NDF1

0 94.03±1.22 93.64±5.34 93.46±1.07 93.71±2.80a

2.5 91.81±4.91 91.19±1.65 90.42±1.86 91.14±2.82a

5 91.14±2.82 84.35±1.86 85.68±2.52 86.64±3.14b

Average 91.91±3.29 89.72±5.10 89.85±3.77

ADF2

0 95.90±2.08 92.42±2.60 90.61±2.32 92.98±3.09a

2.5 88.04±2.69 85.30±0.21 82.35±1.17 85.23±2.87b

5 81.46±1.70 78.96±1.17 74.64±1.02 78.35±3.20c

Average 88.47±6.54a 85.56±6.00b 82.53±7.05c

Digestible NDF

0 44.02±0.66 43.28±1.23 46.40±1.22 44.57±1.69c

2.5 47.10±0.58 47.85±0.92 48.69±2.75 47.88±1.63b

5 49.81±0.65 50.17±2.88 50.64±0.97 50.21±1.59a

Average 46.97±2.56 47.13±0.45 48.58±2.42

Digestible ADF

0 33.42±0.68 35.7±0.37 37.43±1.15 35.51±35.51c

2.5 39.32±0.63 40.82±0.29 42.66±1.14 40.93±1.59b

5 45.01±1.18 46.14±1.27 48.95±0.65 46.70±1.99a

Average 39.25±5.08c 40.89±4.57b 43.01±5.07a

Cellulose

0 21.55±0.30a 21.34±0.33a 20.21±0.43b 21.03±0.69a

2.5 19.70±0.46bc 17.56±0.38d 16.89±0.14d 18.05±1.31b

5 19.28±0.61c 17.15±0.49d 16.07 ±0.61e 17.50±1.50c

Average 20.18±1.12a 18.68±2.03b 17.72±1.93c

Hemicellulose

0 19.91±0.88a 19.33±0.66ab 19.15±0.52ab 19.46±0.70a

2.5 18.51±0.40bc 16.75±0.18de 16.40±0.31e 17.22±1.0b

5 17.69±0.15cd 16.42±0.44e 14.99±0.86f 16.36±1.26c

Average 18.70±1.08a 17.50±1.44b 16.85±1.91c

Lignin

0 9.43±3.25 12.14±1.01 12.02±3.61 11.19±2.81

2.5 8.93±2.57 11.42±3.62 8.18±2.18 9.51±2.88

5 7.15±0.72 9.63±1.81 13.81±3.99 10.19±3.66

Average 8.51±2.34 11.06±2.37 11.33±3.82

Table 1. Effects of incubation time and Aspergillus niger inoculum levels on cassava cobs fermentation.

1NDF: Neutral Detergent Fiber; 2ADF: Acid Detergent Fiber; Data are mean ± Standart Deviation;Different superscript letters in the same row indicate significant differences at p < 0.05.
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