
Introduction

Among the currently recognized ten species of
genus Listeria (L. monocytogenes , L. ivanovii, L.
seeligeri, L. innocua, L. grayi, L. welshimeri, L.
marthii, L. rocourtiae, L. weihenstephanensis and
L. fleischmannii), L. monocytogenes is  the major
human pathogen (Graves et al., 2010; Leclercq et
al., 2010; Liu, 2013). The organism is a Gram-pos-
itive, facultative anaerobic, non-spore forming,
able to grow over a wide range of pHs (4.4-9.4),
water activity (0.90-0.97) and salt concentrations
(up to 25% at 4ºC) (Beverly, 2004). Motility of the
organism is limited to 10-25°C and cannot form the

peritrichous flagellae at 37°C (Galsworthy et al.,
1990). L. monocytogenes was documented for the
first time as a foodborne pathogen in 1981(Schlech
et al., 1983) and since that date, it has been contin-
ued to emerge as a one of the main foodborne
pathogens resulting in several outbreaks. Among
the thirteen currently known L. monocytogenes
serotypes, 1/2a, 1/2c, 1/2b and 4b serovars (of lin-
eages I and II) are responsible for more than 98%
of infections from the documented  human cases
(Gianfranceschi et al., 2009; Smith et al., 2013;
Tan et al., 2015). Recently, novel approaches such
as peptide nucleic acid (PNA) have been utilized
to target pathogenic organisms including L. mono-
cytogenes (Alajlouni and Seleem, 2013; Kuriakose
et al., 2013; Nepal et al., 2015). PNA was intro-
duced to the field of life science in 1991 (Nielsen*Corresponding author: Mostafa F.N. Abushahba
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Listeria monocytogenes is a serious foodborne zoonotic pathogen capable of causing gas-
troenteritis and severe systemic infections such as septicemia, meningitis or abortion in
the infected individuals what is called listeriosis. The bacterium is reported as the third
leading cause of death among the foodborne pathogens preceded by nontyphoidal Salmo-
nella spp. and Toxoplasma gondii. The power to tolerate a wide range of temperatures is
considered the most prominent trait distinguishing it from the other foodborne pathogens.
Within the infected host, the bacteria harbor inside macrophages and jump from cell to an-
other without leaving the safeguarding milieu of the host's cells utilizing a set of genes in-
cluding hly (listeriolysin O), plcA (phosphatidylinositol-specific phospholipase c), plcB
(phosphatidylcholine-phospholipase C) and actA (actin-assembly inducing protein). In ad-
dition to the health concerns associated with antibiotics, treatment failure likely occurs
among listeriosis-infected persons especially with the inability of most antibiotics to access
intracellular replicative niches and achieve the optimum therapeutic concentrations within
the infected cells. Recently, one novel choice, peptide nucleic acid (PNA), has been
emerged to target this bacterium as a model of targeting intracellular pathogens with anti-
sense agents. PNA is a one of the DNA analogues which works via specific inhibition of
bacterial gene expression.
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et al., 1991) as an artificial DNA mimic able to
form specific, strong and stable complexes with
RNA and DNA and thus inhibiting gene expression
(Nielsen, 2004). Given their unique mode of action
in silencing expression of essential genes, PNAs
hold the promise to act as novel therapeutic alter-
natives to conventional antibiotics.

Discovery and evolution of L. monocytogenes: His-
torical background

The causative agent of listeriosis was discov-
ered and named as Bacterium monocytogenes more
than ninety years ago in University of Cambridge,
England  by Everitt Murray,  a South African bac-
teriologist, and his colleagues. When they observed
a Gram-positive bacillus organism is able to cause
infection and deaths in laboratory rabbits and
Guinea pigs and was associated with a marked
mononuclear leucocytosis (Murray et al., 1926). In
1929,  the bacterium was  first described as a cause
of severe invasive infections in humans (Nyfeldt,
1929). Eleven years later, it was named Listeria
after Joseph Lister; Pioneer of septic surgery (Pirie,
1940). In the same year, Paterson (1940) presented
the serotyping as a first discriminatory method for
Listeria subtypes. Based on O (somatic) and H (fla-
gellar) antigens, he classified Listeria into five so-
matic and four flagellar antigens.

The genetic determinants responsible for L.
monocytogenes serotypes have been extensively
studied in the recent years. As early as 1989, the
first phylogenetic classification of L. monocyto-
genes by multilocus enzyme electrophoresis
(MLEE) typing was conducted and it was found
that the bacterium can be grouped in two distinct
evolutionary groups, termed lineage I and II (Pif-
faretti et al., 1989). This initial observation was
also confirmed by two  independent studies per-
formed in the same year (Bibb et al., 1989) as well
as in the following year (Bibb et al., 1990). How-
ever, in 1995, the analysis of the data obtained from
partial sequencing of the genes flaA (flagellin), hly,
iap (p60), and 23S rDNA revealed the existence of
a third lineage (III) (Rasmussen et al., 1995). This
existence was further supported by a study con-
ducted two years later (Wiedmann et al., 1997).
Later on 2001, Nadon et al. (2001) demonstrated a
correlation  between serotyping, ribotyping, and
lineage assignment. They found that lineage 1 in-
cludes isolates of serotypes 1/2b, 3b, 3c, and 4b,

whereas lineage II included isolates of serotypes
1/2a, 3a, and 1/2c, and isolates of serotypes 4a and
4c were specified to lineage III. Moreover, based
on partial sigB and actA sequencing, Roberts et al.
(2006) showed that lineage III includes three ge-
netically and phenotypically distinct subgroups (i.e.
IIIA, IIIB and IIIC) and the most prominent phe-
notypic feature was the inability of  all subgroup
IIIB and IIIC isolates to utilize  rhamnose, unlike
typical L. monocytogenes. Two years later, the sub-
group IIIB was reported as the fourth evolutionary
lineage of L. monocytogenes (Ward et al., 2008).

L. monocytogenes genomics

Though the first DNA sequence appeared early
in 1977 for the Bacteriophage [phi]X174 [5386
base pairs (bp)] as published elsewhere (Sanger et
al., 1977), the first bacterium, Haemophilus in-
fluenza was not fully sequenced until 1995 (Fleis-
chmann et al., 1995) and since then genome
sequences have been published for a myriad of
pathogens. 

The first whole genome sequencing of L. mono-
cytogenes has emerged in 2001 and it was found
that L. monocytogenes EGD-e (serovar 1/2a)
genome size is ~ 3.0 Mb, containing 39% G+C
content and the total number of genes and protein-
coding genes is 3835 and 2853, respectively. The
organism has a cluster of virulence genes, involv-
ing prfA (positive regulatory factor A), inlA (inter-
nalin A), inlB (internalin B), hly (listeriolysin O),
plcA (phosphatidylinositol-specific phospholipase
c), plcB (phosphatidylcholine-phospholipase C),
actA (actin-assembly inducing protein) and mpl
(zinc metalloproteinase), encoding for particular
proteins that contribute in definite steps in the in-
fection process. The genome has 331 (11.6% from
total genes) transporter genes and 88 from which
are responsible for glucose metabolism indicating
the essentiality of such carbohydrate in the growth
of L. monocytogenes. The bacterium was also
found to encode 209 transcriptional regulators,
which represents 7.3% of the predicted coding se-
quences (Glaser et al., 2001) and this high ratio of
regulatory genes, explains the ingenuity of L.
monocytogenes to survive and grow in a wide
range of arduous environmental conditions (Glaser
et al., 2001; Liu et al., 2004). The successful full
genome sequencing of L. monocytogenes EGD-e
by Glaser et al., in 2001 provided new insights re-
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garding the virulence of the bacterium and has
opened the door for several L. monocytogenes
strains of diverse sources to be  partially or com-
pletely sequenced by other listeriologists in the fol-
lowing years (Doumith et al., 2004; Weinmaier et
al., 2013; Wu et al., 2015). In fact, the later DNA
sequencing studies have elucidated remarkable ge-
netic diversity across the individual strains of L.
monocytogenes, with 25-140 genes being strain-
specific (Doumith et al., 2004; Hain et al., 2012,
2006; Kuenne et al., 2013).

L. monocytogenes RNA polymerase (RNAP)

Gene expression is a critical process for the vi-
ability of all organisms. Bacterial RNA polymerase
(RNAP) is considered the principal enzyme of gene
expression (Bai et al., 2011; Borukhov and Nudler,
2008). It exists in two forms; core and holoenzyme
(Borukhov and Nudler, 2008). In L. monocyto-
genes, the core RNAP complex consists of four cat-
alytic subunits (β', β, α, and ω) which encoded by
rpoC, rpoB, rpoA and rpoZ, respectively (Glaser et
al., 2001). Initiation of transcription requires asso-
ciation of sigma factors to the core to form the ac-
tive complex of the enzyme (RNAP holoenzyme)
(Borukhov and Nudler, 2008). Moreover, the en-
zyme is evolutionarily conserved, shares high sim-
ilarity between bacterial strains, and is different
from the eukaryotic homologues (Bai et al. 2011).

Intracellular lifestyle of L. monocytogenes

L. monocytogenes has the power to enter and
survive into both phagocytic and nonphagocytic
cells, such as epithelial cells, hepatocytes and en-
dothelial cell (Lecuit and Cossart, 2002; Lecuit,
2005). Following internalization by an approxi-
mately half hour, it invades the host cytosol with
the aid of listeriolysin O (LLO) and two phospho-
lipases (e.g. phosphatidylinositol-specific phospho-
lipase C and a broad-spectrum phospholipase C)
(Tilney and Portnoy, 1989; Portnoy et al., 2002;
Bonazzi and Cossart, 2006).

The cytolytic toxin LLO which encoded by the
hly gene is considered the main virulence factor of
L. monocytogenes required in the intracellular life
cycle. It makes pores in vacuolar membranes of the
phagosomes causing a passive flux of ions and
macromolecules. This leads to a quick vacuolar
lysis and bacterial release into the neutral pH and

nutrient-rich host cytosol  (Gaillard et al., 1987;
Portnoy et al., 2002). Beside LLO, L. monocyto-
genes produces two important phospholipases, PI-
plc (encoded by plcA) and PC-plc (encoded by
plcB). They are well-known virulence factors func-
tioning in cooperation with LLO so as to help the
bacteria to escape from the vacuoles inside the host
cells. Once released in the cytosol, Listeria can pro-
liferate and then distribute to the adjacent cells via
formation of actin tail (Mengaud et al., 1991;
Schuppler and Loessner, 2010).

L. monocytogenes as an emerging foodborne
pathogen

L. monocytogenes is an ubiquitous organism
and can be found in a wide variety of raw and
processed foods such as  fish and poultry (Hussein
et al., 2011; Jamali et al., 2013; Montero et al.,
2015), milk and dairy products, various meats and
meat products such as beef, pork and fermented
sausages (Meloni, 2015; Montero et al., 2015). 

The first evidence of foodborne transmission of
L. monocytogenes was documented in 1981 in
Canada when 34% died out of 41 confirmed cases
of listeriosis associated with consumption of con-
taminated coleslaw (Schlech et al., 1983). Since
that date, the pathogen has been implicated in sev-
eral foodborne outbreaks with high case fatality
rates (Schlech, 2000). Recently, in 2011, can-
taloupes contaminated with L. monocytogenes
caused the deadliest foodborne disease outbreak in
the United States in nearly 90 years with 33 deaths
and one miscarriage out of 147 confirmed human
cases (McCollum et al., 2013), this outbreak was
followed by several outbreaks in the recent four
years (CDC, 2015). Moreover, the bacterium was
reported as the third leading cause of death  attrib-
uted to  food poisoning pathogens (Scallan et al.,
2011).

The burden and management of listeriosis

It was indicated that the presence of the bacteria
in the human or animal feces is not a proof indica-
tion of illness since between 2% and 6% of healthy
humans and animals harbor L. monocytogenes in
their gastrointestinal tract and act as transient car-
riers for the organism without showing clinical
signs (Gellin and Broome, 1989; Rocourt, 1996).
However, L. monocytogenes possesses a public
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health impact as a causative agent of listeriosis
which considered one of the emerging foodborne
zoonoses (Oevermann et al., 2010; Dhama et al.,
2013) primarily contracted by ingestion of contam-
inated food products such as raw meat, dairy prod-
ucts, vegetables, and seafood (Allerberger and
Wagner, 2010) and triggering primarily pregnant
women, neonates, geriatric population, and those
with weakened immune systems (Elinav et al.,
2014).

The clinical manifestations of listeriosis in hu-
mans vary from mild gastroenteritis to invasive
life-threatening illness depending on the infected
person. For instance, in healthy people, the disease
can be manifested as a self-limiting febrile gas-
troenteritis after consumption of heavily contami-
nated food (Ooi and Lorber, 2005). While, the aged
and immunocompromised individuals show the in-
vasive form of the disease that can be manifested
by more severe clinical symptoms like septicemia,
meningitis, and meningoencephalitis. Moreover,
this serious invasive form can also occur in preg-
nant women and their newborns leading to abor-
tion, premature birth and neonatal meningitis
(Schuchat et al., 1991; Vázquez-Boland et al.,
2001). 

Effective treatment of diseases produced by in-
tracellular zoonotic pathogens like Mycobacterium,
Brucella, Salmonella and Listeria is a daunting task
due to inability of  most antibiotics to access intra-
cellular replicative niches and attain the optimum
therapeutic concentrations within the infected cells
(Schuchat et al., 1991; Vázquez-Boland et al.,
2001; Seleem et al., 2009a, 2009b). These chal-
lenges have sparked efforts to target intracellular
bacteria utilizing different novel approaches such
as peptide nucleic acid (Alajlouni and Seleem,
2013; Kuriakose et al., 2013; Nepal et al., 2015).

Peptide nucleic acid (PNA)

History and features of PNA

Peptide nucleic acid was introduced to the field
of life science by Peter E. Nielsen and others, Uni-
versity of Copenhagen, Denmark in 1991 (Nielsen
et al., 1991). It is a nucleic acid mimic, has the
standard nucleobases (Adenine,  Thymine, Gua-
nine and Cytosine), in which the sugar phosphate
backbone of natural nucleic acid is replaced by
pseudopeptide backbone (polyamide) usually

formed from N-(2-amino-ethyl)-glycine units
(Egholm et al., 1992; Nielsen and Egholm, 1999).
The purine and pyrimidine bases are linked to the
pseudo peptide backbone by methylene carbonyl
linkages (Nielsen, 1999). PNA has a number of
unique traits, making it a promising antigene and
antisense therapeutic agent; First, PNA structure is
free from the phosphate group (uncharged) thus, it
is able to form extraordinary strong complexes
with the negatively charged RNA and DNA with-
out electrostatic repulsion (Demidov and Frank-
Kamenetskii, 2004). It was found that PNA-DNA
duplexes possess higher thermal stability than the
corresponding DNA-DNA duplexes  due to the ab-
sence of electrostatic repulsion (Ray and Nordén,
2000). Moreover, the presence of pseudo-peptide
backbone makes it resistant towards nucleases and
proteases of cells allowing in vitro  and in vivoex-
tended life span for PNA comparing to DNA or
RNA (Demidov et al., 1994; Mishra and Samal,
2011). Unlike primers which act as a substrate to
DNA polymerase (Berdis 2009), PNA due to the
lack of the free 3′ hydroxyl group, cannot be rec-
ognized by such enzyme  (Orum et al., 1993;
Pellestor and Paulasova, 2004).

Mode of action

PNAs can convey their action by two unique
strategies e.g. antigene strategy and antisense strat-
egy (Good and Nielsen, 1997; Mishra and Samal,
2011) as illustrated in Fig.1. First,  PNA is able to
recognize and hybridize to complementary se-
quences in the gene of interest within the genomic
DNA resulting in extra stable PNA-DNA complex
which interferes with the transcription of that gene
(antigene effect) either by blocking the action of
the RNA polymerase (Hanvey et al., 1992) or by
arresting the further transcription elongation
thereby producing truncated RNA transcripts
(Mishra and Samal, 2011). Secondly, PNA func-
tions via recognition and binding to the reserve
mRNA forming stable RNA-PNA complexes
which cause steric blocking of either RNA process-
ing, transport into the cytoplasm, or translation (an-
tisense effect) and cannot act as substrates for
RNase H (Mologni et al., 1998). 

It was demonstrated that the rate of DNA-PNA
binding can be dramatically increased during DNA
transcription, especially when the PNA sequence is
designed to be complementary to the nontemplate
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strand (mRNA-like strand) rather than to the tem-
plate strand (Larsen and Nielsen, 1996).

Being accessible for ribosome assembly, the
translation start codon region including the up-
stream ribosomal binding site, Shine-Dalgarno, is
considered the most sensitive region for inhibition
by PNAs comparing to other regions in the nucleic
acid  (Dryselius et al., 2003; Rasmussen et al.,
2007).

Intracellular PNA delivery 

The high molecular weight as well as the non-
ionic feature of the PNA constitute a major chal-
lenge for the successful utilization of the PNA to
target intracellular pathogens (Soofi and Seleem,
2012) since their uptake is controlled by the selec-
tive permeability of cellular membranes (De
Coupade et al., 2005; Munyendo et al., 2012). To
overcome the uptake obstacle of PNA, many cell
penetrating peptides (CPPs) have been utilized
over the last 25 years to successfully deliver PNAs
to their targets (Shiraishi and Nielsen, 2014, 2011). 

Cell penetrating peptides (CPPs)

CPPs are positively charged short peptide
residues holding the merit to transport molecules
across the cell membranes (Bechara and Sagan,
2013). They constitute a promising tool for over-
coming the antimicrobials bioavailability problems
as they are able to unlock intracellular and even in-
tranuclear targets helping in an efficient intracellu-
lar delivery of various antimicrobial agents

including PNA (De Coupade et al., 2005; Mun-
yendo et al., 2012). The synthetic (KFF)3K (where
K is Lysine and F is Phenylalanine) which devel-
oped in 1996 (Vaara and Porro, 1996) is the com-
monly used CPP and was successfully able to
deliver PNAs into L. monocytogenes (Alajlouni
and Seleem, 2013).

L. monocytogenes RNA polymerase as a potential
antisense target 

RNAP is a crucial enzyme to the life of all or-
ganisms including bacteria and any possible mean
that can interfere with its function could possess a
direct negative effect on bacterial viability (Bai et
al., 2011). Furthermore, RNAP subunits encoded
by rpoA, rpoB and rpoD genes have received a
considerable attention as antisense targets espe-
cially in intracellular pathogens like S. enterica
(Bai et al., 2012; Soofi and Seleem, 2012), B. suis
(Rajasekaran et al., 2013) and L. monocytogenes
(Alajlouni and Seleem, 2013).

Regarding the latter bacteria, Alajlouni and Se-
leem (2013) targeted L. monocytogenes F4244
using two different PNAs specific for rpoA
((KFF)3K-O-cgatcattcaaa) and rpoD ((KFF)3K-O-
tcataactgcc)) and they found that both PNAs at 40
µM were able to completely clear the bacteria at
pure culture media by 8 hours. Moreover, they
found that both PNAs at 15 µM possessed antimi-
crobial effect against the intracellular bacterial
count inside murine macrophage cells when ap-
plied for 24 hours with a 1.29 and 0.39 log10 CFU
bacterial reduction, respectively.

Fig. 1. The dual strategy of PNA in silencing bacterial genes. Regular steps of gene expression in normal bacteria (Left).
Blocking of gene expression transcription (antigene) and translation (antisense) in targeted bacteria (Right).
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Listeria-infected Caenorhabditis elegans and PNA
efficiency

C. elegans is a small free-living soil nematode
with a length around 1 mm. The worm feeds on mi-
croorganisms; mostly bacteria (Hart and Chao,
2010). It was first introduced as a laboratory animal
model for studying development and behavior by
Sydney Brenner in the mid- 1960s (Brenner, 1974).
Recently, the worm has been extensively adopted
as a whole animal model for exploring the host-
pathogen interactions (Moy et al., 2006; Zhang and
Hou, 2013). For the first time, Alajlouni and Se-
leem (2013) have used infected C. elegans as a
whole animal model for screening the PNAs effi-
cacy. They evaluated the capability of the two
abovementioned PNAs targeting L. monocytogenes
rpoA and rpoD genes to treat Listeria- infected C.
elegans for 24 hours. Although the anti-rpoD PNA
was not able to induce significant effect, significant
reduction accounting for 37% and 72% of the in-
tracellular bacterial growth was achieved by the
anti-rpoA PNA when applied at 15 μM and 30 μM,
respectively.

Future prospects

In the era of the spread of zoonotic diseases and
lack of effective treatment strategies to keep pace
the increasing antimicrobial resistance, PNAs hold
a future promise as effective alternatives to the tra-
ditional antibiotics. Based on the in vitro  and in vi-
voresults achieved (Alajlouni and Seleem, 2013),
we suggest that rpoA gene is an encouraging target
for the development of antisense therapeutics for
effective targeting of the intracellular zoonotic
pathogens like L. monocytogenes. However, further
improvement in terms of intracellular delivery of
such agents and foundation of convenient PNA de-
sign basics is still required to achieve more success.
Focusing on the development of appropriate anti-
sense therapeutics specific for L. monocytogenes
could play an important role in the creation of a
knowledge-based design that can be utilized for tar-
geting other intracellular zoonotic pathogens such
as Mycobacterium, Brucella, and Salmonella.
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