Efficacy of Probiotic in Improving Welfare and Mitigating Overcrowding Stress in Broilers

Rasha R. Ibrahim1, Fatma Khalil1*, Ahmed S. Mostafa2, Hosny H. Emeash1

1Animal and Poultry Management and Wealth Development, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt.
2Animal and Poultry Management and Wealth Development, Faculty of Veterinary Medicine, Beni-Suef University, El Menia University, El Menia, Egypt

ARTICLE INFO
Original Research
Received: 04 September 2018
Accepted: 27 September 2018

Keywords:
Behavior
Broilers
High stocking
Probiotic
Stress
Welfare

ABSTRACT
This study was conducted to investigate the efficacy of probiotic in improving welfare of broilers reared under low stocking density (LSD) and mitigating over loadings or high stocking density (HSD) stress. A total number of 240 chicks were sub divided into four groups with three replicates for each. Two groups were reared under LSD (10 bird/m2); 48 chicks (16 bird/ replicate) for each and another 2 groups were reared under HSD (15 bird/m2); 72 chicks (24 bird/ replicate). At each density, one group was supplemented with Protexin® and the other was not supplemented. Blood corticosterone (CS) level was measured and behavior of broilers was recorded weekly. At the end of the growing cycle, behavioral welfare, fear response test (time of first attempt to stand, number of attempts to stand and tonic immobility duration; TI) was performed and brain monoamines (serotonin, norepinephrine and dopamine) concentrations were measured. As a result, HSD stress increased the time birds spent to perform the first attempt to stand and prolonged TI duration. However, Protexin® supplementation only reduced the time of first attempt to stand at higher density without alteration of the number of attempts required to induce TI. No significant improvement in fear response in LSD birds supplied with Protexin®. Furthermore, HSD stress decreased feeding, drinking and walking duration. However, Protexin® supplementation improved feeding, drinking and walking behaviors at LSD and did not improve behaviors of birds at HSD. Moreover, HSD increased CS levels at the 4th, 5th and 6th week of the growing cycle. However, Protexin® supplementation had a decreasing effect on CS levels in the birds reared at HD at the last two weeks of the growing cycle. In addition, brain serotonin concentration was increased in birds reared at HD without Protexin® supplementation and showed no alteration in that supplemented with the probiotic at LSD and HSD. Data suggests that, Protexin® supplementation may be beneficial in improving welfare (behavioral indicator) of broilers reared at LSD and alleviate some effects of HSD stress on birds.

*Corresponding author: Fatma Khalil
E-mail address: fatmahn77@yahoo.com

Introduction

There is a marked increase in the global demand of poultry meat. By 2030, poultry meat consumption will increase to 25% than that of 2015 in developing countries. To meet this growing demand, many broiler farms were shifted from extensive to intensive rearing system (Wahyono and Utami, 2018). However, this intensification/ high stocking density (HSD) poses stress on birds.

In the uncontrolled environmental conditions, HSD is a multiple stressor because it results in unfavorable environmental conditions (Heckert et al., 2002; Estevez, 2007) such as high temperature and ammonia. In controlled environmental conditions, confliction between the birds is the main stressful effect of HSD (Ravindran et al., 2006). In additions, restriction of the floor space allowed for birds may hinder them to express their normal behavior and enjoy good health, hence bird’s welfare is impaired (Welfare Quality®, 2009; Abudabos et al., 2013). In the poultry industry, the utmost goal is maximizing production without impairing bird’s welfare caused by overcrowdings (Abudabos et al., 2013). Since stressors have negative effects on the gut microflora balance (Sohail et al., 2010; Guardia et al., 2011), the best approach to alleviate stress and improve welfare of birds is the activation of these flora using feed or drinking water additives.

Among these additives, probiotics, which activate gut microflora (Yu et al., 2008), performance (Cengiz et al., 2015), immunity (Teo and Tan, 2007), decrease excreta ammonia emission (Zhang and Kim, 2013) and improve the raising environment (Endo and Nakano, 1999) in poultry production.

Stress response could be assessed by measuring bird’s behavior (Bruno et al., 2011), blood corticosterone concentration (Shakeri et al., 2014; Najafi et al., 2015) and brain monoamines (Chaoulloff et al., 1999). Impairment of feeding, drinking and kinetic (walking) behaviors may retard growth and performance in poultry farms. Hence, behavior measurement is a useful tool of welfare indicator.

Based on our knowledge, there are many reports about
HSD stress (Endo and Nakano, 1999; Zhang and Kim, 2013) such as using probiotic to avoid physiological stress (Sohail et al., 2010, 2011). While, there is lack of studies that assess the role of probiotic in providing welfare and alleviating HSD stress on broilers.

Therefore, this study was designated to investigate efficacy of probiotic to improve welfare of birds reared at low stocking density; LSD (10 birds/m²) and mitigate high stocking density; HSD (15 birds/m²) stress on broilers using blood corticosterone, brain monoamines and behavior (fear response behavioral test, feeding, drinking and waking), as welfare indicators and stress assessment parameters.

Materials and methods

Chemicals and probiotic

Protexin® probiotic (Enterococcus faecium 2x10⁸ CFU/g (2x10¹³ CFU/kg)) was purchased from probiotic International Smorest, UK., noradrenaline (NA), dopamine (DA) and serotonin (5-HT) HPLC standards and streptozotocin (STZ) were purchased from Sigma Aldrich Chemicals Company St. Louis USA. CoQ10 capsules were purchased from Arab Company for Pharm. & Medicinal Plants (MEPACO-MEDIFOOD) Enshas-Sharkeya-Egypt. All other chemicals were of HPLC grade and purchased from Sigma.

Experimental design

This study was conducted in the poultry house of Animal and Poultry Management and Wealth Development Department at the Faculty of Veterinary Medicine, Beni-Suef University, Egypt.

Two hundred and forty unsexed one-day old (Cobb type breed) chicks, purchased from a commercial hatchery at Beni-Suef. They were brooded at 33°C using electric heaters for the first week of age. At the end of the first week, they were randomly distributed into four groups. Two groups of birds were reared at LSD (10 bird/m²) groups, 96 birds were divided into two groups (one was not supplemented with probiotic (LDS) and the other was supplemented (LSDP), three replicates for each. Forty eight chicks were used in each group (16 bird/replicate). The other two groups were reared at HSD (15 bird/m²) groups, 144 birds were divided into two groups (one was not supplemented with probiotic (HSD) and the other was supplemented (HSDP); three replicates (24 bird/replicate). This study was approved by Institutional Animal Care and Use Committee of Beni-Suef University (BSU-IACUC), Egypt.

Birds accommodation and management

Chicks were reared in 12 floor pens –of equal dimension (1m×1.6 m) with a new clean wood shaving litter material. The proper ventilation was maintained using windows, fans and exhausting fans. In addition, maintaining brooding heating was performed by the electric heaters, with a decrease in the temperature 2°C weekly. Continuous lighting program was used for the first week and 23 hrs light and 1hr dark till the end of the experiment. Feed and water were provided ad libitum in well distributed manual plastic feeders and drinkers. Feeding of birds was divided into two-phase broiler-feeding regime; a starter containing 23% protein crumble for the first 21 days, then a grower pellet with 21% protein till the end of the study at day 42.

Protexin® supplementation

Protexin® was added to the water starting from the second week (according to the manufacturer recommendation).

Fear response (fearfulness) test

Birds were tested for fear response using fear test level; tonic immobility (Forkman et al., 2007) two birds/replicate were caught and carried in an upright position to a separate neighboring room. A few seconds after the bird was caught, tonic immobility was induced by placing the bird on its back with the head hanging in a U-shaped wooden cradle (Jones and Faure, 1981). The bird was restrained for 10 seconds(s). The observer sat in full view of the bird, about 1 min. away, and fixed his eyes on the bird to give the fear-inducing properties of eye contact. If the bird remained immobile for 10 sec., after the experimenter removed his hands, a stopwatch was started to record: a) Latency Duration (s) until the bird righted itself. If the bird righted itself in less than 10 sec, then it was considered that tonic immobility had not been induced, and the restraint procedure was repeated (3 times maximum). If the bird did not show a righting response over the 10 min test period, a maximum score of 600 s was given for righting time. Thus, tonic immobility (TI) duration ranged from 0 to 600 sec.

b) Number of attempts that were done by the bird to righted himself and the duration of the first attempt was calculated.

Measurement of ingestive and locomotor behaviours

The behavior of chicks was recorded once a week, in the morning (9:00 – 12:00 a.m.) for 5 consecutive weeks. Each pen was observed for 20 minutes. Scan method of observation was adopted in this study according to Bubier (1996) and Maria et al. (2004) to analyze ingestive (feeding and drinking) and locomotor (walking) behaviour of birds. Total feeding duration; TFD (when head extended towards available feed resources while beak in or above the feed trough appeared to be manipulating or ingesting), total drinking duration; TDD (Beak in contact with water in or above the drinker and appears to be drinking water) and total walking duration; TWD (moving forward taking one or more step) throughout the growing cycle were calculated.

Measurement of blood corticosterone level (µg/dl)

Five ml of blood were collected from wing vein of 6 randomly overnight fastened birds per replicate (2 from each replicate). Blood was collected without anticoagulant for serum separation. The samples were collected weekly for corticosterone (CS) throughout the growing cycle. All samples were kept at 4°C then centrifuged at 3000-4000 rpm for 10-15 min, the obtained supernatant was stored at -20°C. Corticosterone levels were measured using commercial ELISA kits.

Measuring brain monoamines concentrations (nmol/ml)

At the end of the growing cycle (6th week), 12 randomly selected birds from (4 from each replicate) were fasted overnight then slaughtered and their brains were removed quickly and placed in iced normal saline, perfused with the same solution to remove blood cells, and frozen at -80°C for estimation of brain monoamines (Noradrenaline (NA), dopamine (DA) and serotonin (5-HT), or measuring brain monoamines concentration, the frozen tissues were cut into small pieces and homogenized in phosphate buffer (pH 7.4), then centrifuged at 4000 rpm for 15 minutes at 4°C and the supernatant was removed for chemical parameters estimation. Then, brain monoamines were measured in the obtained supernatants according to Abdel-Salam et al. (2011).
Statistical analysis

Data were presented as mean ± standard error of mean and analyzed by one-way ANOVA test using SPSS (2011). Data was considered significant at (P<0.05).

Results

HSD increased (P< 0.05) the time that birds spent to perform the first attempt to stand (Table 1) and prolonged (P<0.05) TI duration. However, Protexin® supplementation only reduced (P< 0.05) the time of first attempt to stand at higher density without alteration of the number of attempts required to induce TI. Table 2, illustrated the effect of density and the role of probiotic on feeding, drinking and walking behaviors of broilers. LSDP group performed longer time feeding, drinking and walking compared to LSDP, HSD and HSDP at (P<0.05). Table 3, declared that HSD increased (P<0.05) CS levels at the 4th, 5th and 6th week of the growing cycle. However, protexin® supplementation had a decreasing effect on CS (P<0.05) levels in the birds reared at HD (HSDP) at the last two weeks of the growing cycle. Brain 5-HT level was significantly (P<0.05) increased in birds reared at HD (P<0.05) however, Protexin® supplementation did not affect serotonin level in HSDP group NE and DA levels were not altered in all groups.

Discussion

The present study demonstrated that supplementation of broilers with probiotic may alter different welfare indicators and stress response of the birds.

The observed increase in fear response of birds in HSD group confirms that the intensification of birds impairs their welfare (Onbaşılar et al., 2008; Na-Lampang 2014). This result is in line with that of Onbaşılar et al. (2008) and Buijs et al. (2009), who reported significant increase in TI duration with increasing density. However, it is disagreeable with Ventura et al. (2010), who found that both duration and the number of attempts required to induce TI weren’t affected with density. This may be attributed to high litter moisture content caused by overcrowding (Van Poucke et al. (2007) and Campo et al. (2007) and /or bird’s confliction (Buijs et al. 2009).

Based on welfare behavioural test, our findings suggested that probiotic supplementation failed to decrease fear response in broilers subjected to stress. This data is in agreement with Ghareeb et al. (2008). Further study is needed to investigate the effect of other probiotics and medicinal plants and or combination of both on welfare indicators of broilers.

Our result indicated the prominent impairment of feeding and drinking behavior of birds stocked at HD. This result was in harmony with that reported by Cengiz et al. (2015). On the contrary, Uner et al. (1997) reported that highly stocked birds spent more time around feeders and drinkers. Meanwhile, Andrews et al. (1997) found no alterations in feeding and drinking behavior of birds stocked at HD. This difference in findings of researchers indicates that stress response of birds is gene and stressor-dependent.

The observed decrease of the walking behavior in response to HSD stress is also recorded by Sanotra et al. (2002)

| Table 1. The effect of protexin® supplementation on fear levels of broiler chickens |
|---------------------------------|---------------------------------|---------------------------------|
| First attempt to stand (Sec) | Number of attempts | TI duration (Sec) |
| LSD | 129.83±27.1b | 1.00±0.50 | 190.50±48.02b |
| LSDP | 120.33±12.82b | 1.17±0.60 | 169.00±21.73b |
| HSD | 492.33±79.57a | 0.33±0.17 | 587.67±12.33a |
| HSDP | 399.83±132.43b | 0.67±0.67 | 416.67±32.19a |

Results are expressed as Means ± Standard Error (S.E.).

Table 2. The effect of protexin® supplementation behavior of broiler chicken

<table>
<thead>
<tr>
<th>TFD (Sec)</th>
<th>TDD (Sec)</th>
<th>TWD (Sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSD</td>
<td>1366.93±77.17b</td>
<td>155.33±4.5b</td>
</tr>
<tr>
<td>LSDP</td>
<td>1938.27±145.69a</td>
<td>190.87±3.9a</td>
</tr>
<tr>
<td>HSD</td>
<td>1193.33±44.32b</td>
<td>111.47±3.0b</td>
</tr>
<tr>
<td>HSDP</td>
<td>1501.00±56.67b</td>
<td>124.33±4.3b</td>
</tr>
</tbody>
</table>

Results are expressed as Means ± Standard Error (S.E.).
and Buijs et al. (2009). It was noticed that the highest adverse effect of HSD on the birds was prominent at 5th and 6th weeks of the growing cycle. On the other hand, Andrews et al. (1997) recorded that obvious effect of HSD was at 4th week of age. Generally, birds’ movements are negatively correlated to their age (Andrews et al., 1997; Kristensen et al., 2007) especially these stocked at HD. The observed increase in TFD in LSD group supplemented with probiotic is in consistence with data of Verdu et al. (2008) and Naglaa (2013) in mice and turkey, respectively. However, this result is in contrast to that reported by Koenen et al. (2004).

The reported increase of CS levels in response to HSD indicated the stressful effect of overcrowdings. This result was similar to that obtained by Beloore et al. (2010); Shakeri et al. (2014) and Najafi et al. (2015), who observed a trend of increasing corticosterone concentration with higher stocking density. On the other hand, this result is disagreeable with Turkyilmaz (2008); Tong et al. (2012) and Cengiz et al. (2015).

The obtained reducing effect of Protexin® supplementation on CS levels of birds stocked at HD is supported with Sohail et al. (2010), who found that probiotics were helpful in minimizing stress on broiler. However, Cengiz et al. (2015) reported that probiotics didn’t affect CS levels at HSD.

HSD induced stressful effect because it was accompanied with several factors such as the competition on feed and water (Craig et al., 1986), increasing litter moisture and ammonia (Dawkins et al., 2004) and the increased carbon dioxide (Yardimci and Kenar, 2008), which were contributing in increasing CS levels. These factors may be prevented by Protexin® supplementation (Endo and Nakano, 1999; Zhang and Kim, 2013). Hence, probiotic may be effective in mitigating stressful effect on CS response.

The obtained increase in brain 5-HT level in the birds reared at HD is agreeable with Arborelius and Eklund (2007) and Cheng and Fahey et al. (2009), who recorded reduction in level of brain serotonin in layers and rodents exposed to different stressors. In additions, the reported high brain 5-HT concentration in birds stocked at HD with Protexin® supplementation is similar to data recorded by Adell et al. (1988) in rats and Liu et al. (2016) in mice supplemented with probiotic and exposed to stress.

Increasing serotonin may be urged to corticosterone action (Chalmers et al., 1993; Nishi and Azmitia, 1996). On the other hand, 5-HT was reported to stimulate the release of CRF and ACTH from the hypothalamus and pituitary of mammals (Dinan, 1996). Probiotics regulate central 5-HT metabolism by regulation of tryptophan metabolism (Desbonnet et al., 2008), and/or regulation of brain-derived neurotrophic factor which activate 5-HT (Benmansour et al., 2008). Therefore, Protexin® supplementation succeeded to alleviate HSD stress on brain 5-HT level in our study.

The recorded no alteration in brain NE, and DA levels is in agreement with Korte et al. (1997) and Cheng and Fahey et al. (2009), while, it is disagreeable with Rouge-Pont et al. (1995). The conflicting monoamines data from different investigations may be related to different species, stressors, duration and frequency of stressor presentation as well as selected region of brain for measuring monoamines.

Brain 5-HT was suggested to play a role in regulating feeding (Yadav et al., 2009), walking (Kiehn and Kjaerulf, 1996), and neuroendocrine stress responses (Chaouloff, 1993). It had inhibitory effect on the responsiveness some behavioral patterns (Dallman, 1993). Thus, the observed increase of brain 5-HT concentration in our study was accompanied with reduction in the feeding behavior, feed intake and walking behavior in HSD group.
Conclusion

The results of this study suggested that HSD may pose serious alterations in behavior, blood CS and brain serotonin concentration, which may be alleviated by probiotic supplementation that also may improve welfare of the unstressed birds.

Acknowledgement

We acknowledge Projects Funding and Granting unit belonging to the Scientific Research Developing Unit in Beni-Suef University-Egypt, for funding this study.

References

Nishi, M., Aizuma, E.C., 1996. 5-HT(A) receptor expression is modu- lated by corticosterone receptor agonists in primary rat hip-

