
Introduction

Milk and dairy products are the source of nutrients re-
quired for the growth of many microorganisms, including
Staphylococci (Farzana et al., 2004). Bacterial Milk contamina-
tion usually occurs throughout the milking process, and this
depends on the sanitary condition of the environment and
utensils used for milking and the milker’s hands (Smith et al.,
2007). Also, it can gain access to milk by direct excretion from
udders with clinical or subclinical Staphylococcal mastitis
(Peles et al. 2007). Staphylococci have been described as bac-
teria that may attach to the contact surfaces in both milk and
meat processing industries, form biofilms and survive on
them. Their attachment to food contact surfaces in food pro-
cessing plants, and subsequent biofilm formation pose a risk
of contamination in milk and meat products. Bacterial con-
tamination of foodstuffs can lead to their decay or transmis-
sion of diseases ( Schlegelová et al., 2008). The formation of
biofilms is increasingly recognized as an important factor in
the virulence of Staphylococcus (Oliveira et al., 2006). Bacteria

in the biofilm are highly resistant to both innate and specific
host defense mechanisms due to their extracellular polysac-
charide matrix and low metabolic rate, among other things,
they are not susceptible to phagocytes and antibiotic-resistant
macrophages, which only attack dividing cells. These local
conditions are conducive to the continued existence of bac-
teria for months to years, and periodic outbreaks (Potera,
1999).

The implications of biofilm formation for infections and
drug resistance have triggered increased interest in the char-
acterization of the genes involved in biofilm formation. The
intercellular adhesion (ica) locus consists of the genes
icaADBC, and among the ica genes, icaA and icaD have been
reported to play a significant role in biofilm formation in
Staphylococcus aureus (S. aureus) and Staphylococcus epider-
midis (S. epidermidis) (Cramton et al., 1999).

S. aureus is one of the major bacterial pathogens which
cause food poisoning (Yu-Cheng et al., 2008). Staphylococcal
food poisoning is a mild intoxication occurring after the in-
gestion of food containing Staphylococcal enterotoxins (SEs)
(Chiang et al., 2008) 
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Detection of Biofilm and some Enterotoxins of Staphylococcus aureus
Isolates in Ice Cream
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Staphylococcus aureus is the most bacteria that have ability to form a biofilm and secret different types
of enterotoxins that cause food poisoning in humans. Biofilms is a community of microorganisms en-
cased in a matrix of extracellular polysaccharide (slime), called polysaccharide intercellular adhesion
(PIA). They have related to a diversity of chronic and persistent infections. This study aims to detect the
ability of S. aureus isolated from ice cream to form biofilm by Congo red agar (CRA), microliter plate,
and PCR and the ability of S. aureus to produce enterotoxins by PCR. 15 S. aureus isolates were grown
on CRA and microtiter plate method then subjected for detection of icaA and icaD genes by PCR and
for the presence of enterotoxins genes (sea, seb, sec, sed, and see) which are responsible for S. aureus
biofilm formation and Staphylococcus food poisoning. 73.3% of the isolates were biofilm producers on
Congo red agar, 60% of the isolates were positive for biofilm production using microtiter plate method
and by PCR technique, all the isolates 100% had icaD gene and 86.6% had icaA gene. The enterotoxin
seb gene was detected in 5 (33.3%) S. aureus isolates, the enterotoxin see gene was detected in 4 (26.6%)
S. aureus isolates while sea, seb and sed gens were not detected in any S. aureus isolates. In conclusion
all aureus isolates were positive for icaD gene and some of S. aureus isolates were positive for icaA gene
which are responsible for biofilm formation and some S. aureus isolates were positive for enterotoxin B
and enterotoxin E, which responsible for food intoxication so the ice-cream considered a potential source
for food intoxication and persistent infection caused by S. aureus. 
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One or more of these genes are thought to be involved in
Staphylococcal food poisoning (Afifi et al., 2011).  

Staphylococcal (SE) enterotoxin is part of the pyrogenic
protein associated with many human diseases. These proteins
are resistant to thermal inactivation and to gastrointestinal
proteases, causing emesis and diarrhea, and can act as super-
antigens (Pinchuk et al., 2010). A wide variety of enterotoxin
and enterotoxin-like coding genes (more than 20 SEs) have
been categorized to have a significant role in stages of host
colonizing, gastroenteritis infections, and invasion of skin,
mucus, and host defense mechanisms (Argudín et al., 2010).
Most genes coding for SEs is located on mobile elements such
as plasmids, bacteriophages or pathogenicity islands (Lindsay
et al., 1998; Zhang et al., 1998). Therefore, horizontal trans-
mission between strains is not uncommon.

Staphylococcal enterotoxin B (seb) is the toxin mostly as-
sociated with typical food poisoning. It has also been shown
to cause a non-menstrual toxic shock syndrome (TSS) (CDC,
2014). Seb has been studied as a potential biological warfare
agent because it is easily dispersed; it is very stable and when
inhaled at very high doses, it can cause extensive systemic
damage, multiple organ failure, and even shock and death.
However, seb is classified as disabling because in most cases,
aerosol exposure does not lead to death, but a temporary but
at the same time severe disabling disease that lasts up to 2
weeks. (Ulrich et al., 1997). So, the purpose of this study was
to detect the ability of S. aureus to form biofilm phenotypically
and genotypically and the ability of these strains to secrete
enterotoxins genetically.

Materials and methods

Bacterial isolates

Fifteen S. aureus isolates were isolated from ice-cream
samples and identified through culture on mannitol salt agar
and biochemical identification and confirmed by PCR tech-
nique according to Samir et al. (2019). These isolates were
subjected for biofilm formation phenotypically and genotyp-
ically and enterotoxins secretion by PCR.

Screening of Staphylococcus aureus for biofilm production by
congo red agar (CRA) plate.

Production of biofilm from all isolates was studied by the
cultivation of the S. aureus isolates on CRA plates, CRA pre-
pared by adding 0.8 g of congo red dye and 36 g of sucrose

to 1L of BHI (Oxoid), then plates were incubated at 37 °C for
24 h. After incubation, black colonies with a dry crystalline
consistency were established as biofilm positive and non-
biofilm producing strains produce red smooth colonies (Gun-
dogan et al., 2006; Krukowski et al., 2008).

Using the microtiter plate method to determine quantitative
biofilm formation

The overnight culture was diluted 1:200 with tryptic soya
broth containing 0.25% glucose, and 200 of each dilution
were seeded per well in a sterile 96-well polystyrene microtiter
plate and incubated at 37 °C for 18 h. After washing 3 times
in phosphate buffered saline (pH 7), wells are dried for 1 h at
60 °C and attached biofilm was stained with 1% crystal violet
for 15 minutes. After rinsing 3 times with distilled water, drying
was done at room temperature and the absorbance of the ad-
herent biofilm was measured at 490 nm in a microplate reader
(Cucarella et al., 2001). The Interpretation of biofilm produc-
tion was calculated according to Stepanovic et al. (2007): The
average OD values were calculated for all tested strains and
negative controls since all tests were performed in triplicate
and repeated three times. Second, the cut-off value (ODc) was
established. It is defined as three standard deviations (SD)
above the mean OD of the negative control: = average OD of
negative control + 3x standard deviation (SD) of negative con-
trol. Then the average OD values of all tested strains compared
with the ODc as follow; if OD ≤ ODc = no biofilm producer;
ODc< OD ≤ 2 ODc= weak biofilm producer; 2 ODc
<OD≤4 ODc= moderate biofilm producer; 4 ODc <OD=
strong biofilm producer.

PCR method for the identification of icaA and icaD genes and
enterotoxins genes 

Extraction of DNA

The extractions of the genomic DNA were conducted ac-
cording to instruction of QIAamp DNA mini kit (Qiagen, Ger-
many, GmbH). 

Polymerase chain reaction (PCR)

The primers for the amplification of icaA and icaD genes
and enterotoxins genes were designed as mentioned in Table
1.
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Table 1. Primers used in this study 

Gene
Primer sequence

Length of amplified product Reference
(5'-3')

icaA
F-CCT AAC TAA CGA AAG GTA G

1315 bp
Ciftci et al. (2009)

R-AAG ATA TAG CGA TAA GTG C

icaD
F-AAA CGT AAG AGA GGT GG

381 bp
R-GGC AAT ATG ATC AAG ATA

sea
F-GGTTATCAATGTGCGGGTGG

102 bp

Mehrotra et al. (2000)

R- CGGCACTTTTTTCTCTTCGG

seb
F-GTATGGTGGTGTAACTGAGC

164 bp
R-CCAAATAGTGACGAGTTAGG

sec
F-AGATGAAGTAGTTGATGTGTATGG

451 bp
R- CACACTTTTAGAATCAACCG

sed
F- CCAATAATAGGAGAAAATAAAAG

278 bp
R- ATTGGTATTTTTTTTCGTTC

see
F- AGGTTTTTTCACAGGTCATCC

209 bp
R- CTTTTTTTTCTTCGGTCAATC



Uniplex PCR for detection biofilm genes

Primers for icaA and icaD were used in 25 μl reaction vol-
ume consisted of, 1 μl of each primer, 12.5 µl Emerald Amp GT
PCR master mix, 4.5 µl PCR grade water, and 6µl of template
DNA. The reaction was done in a thermocycler (Applied
Biosystem 2720) based on the conditions mentioned in Table
2.

Preparation of Sea, Sed and See multiplex PCR reaction

Primers for Sea, Sed and See were used in 50 µl reaction
volume consisted of, 1µl of each primer (20 pml), 25 µl Emer-
ald Amp GT PCR master mix, 11 μl PCR grade water, and 8 μl
of template DNA. The reaction was done in thermal cycler (Ap-
plied Biosystem 2720) based on the conditions mentioned in
Table 2.

Preparation of Seb and Sec duplex PCR reaction

Primers for Seb and Sec were used in 50 μl reaction volume
consisted of, 1 μl of each primer (20 pml), 25 μl Emerald Amp
GT PCR master mix, 13 μl PCR grade water, and 8 μl of tem-
plate DNA. The reaction was done in thermal cycler (Applied
Biosystem 2720) based on the conditions mentioned in Table
2.

Investigation of the PCR products according to Sambrook et
al. (1989) with modification

The products of the uniplex, duplex, and multiplex PCR
were separated by electrophoresis on a 1.5% agarose gel (Ap-
pliChem, Germany, GmbH) in 1× TBE buffer at room temper-
ature using a gradient of 5V/cm. For gel analysis, 20 µl of each

product was loaded in each gel well. A 100-bp DNA ladder
(Qiagen, Germany) was used to find out the amplicon sizes.
The gel was visualized by a gel documentation system (Alpha
Innotech, Biometra).

Results

Detection of biofilm-producing phenotype by Congo red agar
method and microtiter plate method

Based on Congo red agar plate, 11 out of 15 S. aureus iso-
lates were produced biofilm and showed black colonies, while
4 out of 15 isolates were no biofilm-producing showing red
colonies (Table 3 and Fig. 1). However, by microtiter plate
method, 2 isolates out of 15 S. aureus isolates, were strong
biofilm producers, 7 isolates were moderate biofilm producers,
and 6 isolates were weak biofilm producers (Table 3).

PCR detection of icaA and icaD

All 15 isolates were examined for the presence of icaA and

Table 2. Temperature and program conditions during PCR.

Gene Primary denaturation Secondary denaturation Annealing Extension No. of cycles Final extension

IcaA
94˚C 94˚C 49˚C 72˚C

35
72˚C

5 min. 30 sec. 1 min. 1 min. 12 min.

IcaD
94˚C 94˚C 49˚C 72˚C

35
72˚C

5 min. 30 sec. 30 sec. 30 sec. 7 min.

Sea, Sed and See
94˚C 94˚C 50˚C 72˚C

35
72˚C

5 min. 30 sec. 30 sec. 30 sec. 7 min.

Seb and Sec
94˚C 94˚C 50˚C 72˚C

35
72˚C

5 min. 30 sec. 40 sec. 40 sec. 10 min.

Table 3. Results of phenotypic detection of biofilm production

Phenotypic detection
Method Congo red agar Microtitre plate

Results Black colonies Red colonies Strong producer
Moderate Weak
producer producer

No % No. % No. % No. % No. %

11 73.30% 4 26.60% 2 13.3 7 46.6 6 40
Total 15

Table 4. Results of genotypic detection of biofilm production

Genes
Genotypic detection

Ica A Ica D

Results
Positive Negative Positive Negative

No. % No. % No. % No. %
13 86.6 2 13.3 15 100 0 0

Total 15

Fig. 1. A) S. aureus isolate showing black colonies on Congo red agar, B)
Two S. aureus isolates showing red colonies on Congo red agar.
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icaD genes. Among the 15 isolates, 13 isolates revealed the
presence of icaA gene as shown in Table 4, Fig. 2, and all the
15 isolates have icaD gene as shown in Fig. 3.

Occurrence of enterotoxin genes among S. aureus isolates

All the 15 S. aureus isolates were examined for the pres-
ence of enterotoxin genes (sea, seb, sec, sed and see). Among
the 15 S. aureus isolates, two enterotoxin genes (seb and see)
were detected. The enterotoxin seb gene was detected in 5
(33.3%) S. aureus isolates as shown in Fig. 4, However, the en-
terotoxin see gene was detected in 4 (26.6%) S. aureus isolates
(Fig. 5).

Discussion

S. aureus with biofilm formation helps bacteria to survive

in the host and is responsible for persistent or chronic infec-
tion (Christensen et al., 1985; Bernardi et al., 2007). They ex-
hibit resistance to antibiotics by various methods including
restriction of penetration of antibiotics into biofilms, decreas-
ing the growth rate, and expression of resistance genes (Kim,
2001).

Several studies have shown that mucus and biofilm
formed in S. aureus strains that cause catheter-associated and
nosocomial infections is associated with the presence of the
icaA and icaD genes (Arciola et al., 2001; 2002). In this study,
the results of a PCR test for the icaA and icaD genes and phe-
notypic tests were important to develop diagnostic tests for
biofilm-producing microorganisms.

There are various methods for biofilm detection. (Chris-
tensen et al.,1985).  In this study, we evaluated the 15 S. aureus
isolates for their ability to form biofilms by three screening
methods (CRA, MTP and PCR).

The obtained results showed that among the 15 isolates
of S. aureus, 11 (73.3 %) are biofilm producers against 4
(26.6%) non-biofilm producers by CRA method similar results
were reported by Namvar et al. (2013), who reported that 65%
positive results with Congo red agar and by Gowrishankar et
al. (2016), who reported that 77.8% of S. aureus isolates tested
positive for slime using the CRA method. Also, this result
agrees with the previous reports by Kouidhi et al. (2010); Ar-
ciola et al. (2002) and Ammendolia et al. (1999), where 88.9%,
60.8, and 50 of S. aureus were found to be positive for slime
production, respectively. However, (Mathur et al.,2006; Taj et
al., 2012; Ba et al., 2014) reported a smaller number of biofilm
production by Staphylococci species by this method they
found positive results with CRA in 1.97%, 3.47%, and 4.47%
respectively. As researchers have only recently found that
PIA/PNAG (polysaccharide intracellular adhesions/poly N-
acetyl glucosamine) have little input in the biofilm matrix of S.
aureus, so cannot be detected by the CRA method (Taj et al.,
2012; Knobloch et al., 2002).

The microtiter plate test is a convenient and economical
quantitative technique for the identification of critical factors
and optimal culture conditions for biofilm formation. This
technique is used for the direct detection of polysaccharide
production because spectrophotometric measurements pro-
vide quantitative information on the ability of bacterial strains
to rapidly grow while adhering to the substratum (Stepanovic
et al., 2000).

This study showed that the results of biofilm production
by microtiter plate method were 13.3% strong biofilm pro-
ducer, 46.6% moderate biofilm producer, and 40% weak
biofilm producer. These results nearly agree with Mathur et al.
(2006), who reported that 14.47 % strong and 39.4 % moder-
ate biofilm producer, while 46.0 % of isolates were weak or no
biofilm was detected. Also, the results in this study agreed with
Kot et al. (2013), who found that weak biofilm formers were
48.6%, while 40% and 11.4% of strains were moderate and
strong biofilm producers, respectively.

The data for the MTP test were not in agreement with Dar-
wish and Asfour (2013), who observed that the results of
biofilm production by MTP method were 52.5%, 27.5%, and
20% of S. aureus isolates that had strong, moderate, and weak
biofilm producers, respectively. 

The difference between the results of CRA and MTP meth-
ods can be attributed to the fact that phenotypic expression
of biofilm formation is very sensitive to in vitro conditions, so
various methods can be used for detection. In addition, both
of these tests measure the same phenomenon, but in different
ways. CRA has been used as an indirect indicator of polysac-
charide production (Baselga et al., 1993; Stevens et al., 2009).
A combination of phenotypic and genotypic methods would
be recommended for identifying biofilm-producing strains,

Fig. 2. PCR results of icaA gene among S. aureus isolates. Lane L: DNA
ladder, Lane pos: control positive, Lane neg: control negative, lane
1,2,3,5,6,8,9,10,11,12,13 and 14 positives for icaA. Lane 7, 15 negatives for
icaA.

Fig. 3. PCR results of icaD gene among S. aureus isolates. Lane L: DNA
ladder, Lane pos: control positive, Lane neg: control negative, lane 1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 12, 13,14,15 positive for icaD.

Fig. 4. PCR results of enterotoxin genes (sea, sed and see) among Staph au-
reus isolates. Lane M: DNA marker, Lane pos: control positive, Lane neg:
control negative, lane 1,4,6 and 9 positives for see. Lane
2,3,5,7,8,10,11,12,13,14,15 negative for presence of sea, sed or see.

Fig. 5.  PCR results of enterotoxin genes (seb, sec) among S. aureus isolates.
Lane M: DNA marker, Lane pos: control positive, Lane neg: control nega-
tive, lane 3,5,9,10,14 positive for seb. Lane 1,2,4,6,7,8,11,12,13,15 negative
for seb or sec.
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the detection of two biofilm-related genes and their incidence
in Staphylococcus isolates were investigated using PCR reac-
tions.

The intercellular adhesion (ica) locus, consisting of the
genes icaADBC, has been reported to have a potential role of
biofilm formation (Vasudevan et al., 2003). Among the ica
genes, icaA and icaD have been reported to play a significant
role in biofilm formation in S. aureus and S. epidermidis (Gotz,
2002). The gene encoded by ica has been shown to cause the
intercellular biosynthesis of PIA molecules, and It can partici-
pate in the biofilm accumulation stage. Various studies have
demonstrated the key role of the ica gene as a virulence factor
in staphylococcal infections (Namvar et al., 2013).

In this study, the prevalence of icaA and icaD genes in S.
aureus was 86.6% and 100%, respectively, which nearly agree
with Marques et al., (2017), who detected that icaA and icaD
in 85% and 95% isolates, respectively. Castelani et al. (2015)
reported that PCR detected the icaA and icaD genes in 98%
and 100% of S. aureus isolates, respectively. Furthermore,
Namvar et al. (2013) found that all isolates were positive for
the icaD gene determined by PCR. In addition, results from
this study are consistent with Notcovich et al. (2018), who
stated that the PCR results showed that all but one of the iso-
lates were positive for both icaA and icaD genes, with the one
exception being negative for icaA.

Through comparison of genotypic and phenotypic biofilm
characteristics of the isolates revealed that two isolates
showed a good correlation between phenotypic detection by
Congo red agar producing black colonies and by microtiter
plate method that showed strong adherence and also, geno-
typically, they have both genes responsible for biofilm forma-
tion.

It has been reported that failure of staphylococcal strains
that possess the ica locus to form biofilm in vitro could be due
to point mutations in the locus and/or other unidentified fac-
tors negatively regulate the synthesis of polysaccharide cell
adhesion or affect the formation of biofilms (Cramton et al.,
1999). 

There is some experimental evidence that the develop-
ment of new clones, called biofilm negative, has icaA and icaD
genes (Arciola et al., 2001). It has been shown that the expres-
sion of the icaADBC operon is a highly variable factor that is
regulated by phasic changes and rearrangements of the
genome. It has been suggested that variable biofilm expres-
sion helps bacteria adapt to the environmental change con-
ditions of incubation (Costerton et al., 1999; Rachid et al.,
2000). 

It has previously been demonstrated that the phenotypic
expression of biofilm formation is highly sensitive to in vitro
conditions (Baselga et al., 1993) and hence can be detected
variably by different methods. Therefore, a combination of var-
ious methods (phenotypic and genotypic) would be useful for
identifying biofilm producing S. aureus.

The present study showed that one of the isolates was
biofilm producer phenotypically but genotypically have only
icaD, this suggesting that biofilm can be formed even when
only one ica loci gene is present (De Almeida et al., 2017)
These results are like those obtained by Darwish and Asfour
(2013) with bovine milk samples. These authors reported that
the prevalence rates of icaA and icaD genes were 15.0 and
62.5%, respectively. Furthermore, Ciftci et al. (2009) found that
16 (27.1%) and 38 (64.4%) out of 59 strains were positive for
icaA and icaD genes, respectively. The lower detection of icaA,
and therefore the differences in the prevalence rates can be
attributed to the variation in DNA sequences. This may lead
to failed amplification of the genes in some isolates and con-
sequently false negative results (Tormo et al., 2005; Ferrer et
al., 2012; Darwish and Asfour, 2013).

In this study, the 4 isolates which did not produce slime
factor on CRA plate in vitro, were positive for both icaA and
icaD genes. This suggests that certain environmental condi-
tions or the presence of other genes may affect the possibility
of phenotypic behavior on the Congo red agar plate, that may
show colonies that did not fully express the ica gene (Ciftci et
al., 2009).

One of the aims of this study is to evaluate the presence
of staphylococcal enterotoxins genes in the staphylococcal
isolates. The 15 S. aureus isolates were tested for the presence
of sea, seb, sec, sed, see genes by PCR. The data illustrated that
60% of the isolates have enterotoxin genes. This agrees with
Normanno et al. (2007), who reported a 59.8% prevalence of
se genes in food samples, and with Nazari et al. (2014), who
reported that the gene encoding enterotoxin was found in
53.8% of S. aureus isolates that were positive for at least one
enterotoxin gene. and also, with Pereira et al. (2009), who
found the prevalence of enterotoxigenic strains was 68.2%.
Also, the results nearly agree with Omoe et al.  (2002), who
found that 77.4% S. aureus isolates were positive for one or
more se genes, and with Mashouf et al. (2015), who reported
that the prevalence of SEs was 77.6% among the tested iso-
lates. According to research, genes can be located in plasmids
(sed and sej), bacteriophages (sea and see), and pathogenic is-
lands. (seb and sec), and chromosomes (seg, seh, and sei);
therefore enterotoxin-producing S. aureus carry several se
genes (Alibayov et al., 2014).

In this study, seb enterotoxin was detected in 33.3% of S.
aureus isolates. The result agreed with Nazari et al. (2014), who
detected seb in 26.9% and disagree with Kitai et al. (2005) and
Rasoul et al. (2015), who observed seb in 64.1% and 4.1% of
S. aureus respectively. The enterotoxin see was detected in
26.6% of S. aureus isolated in this study. This nearly agrees
with Asadollahi et al. (2014), who reported that see gene found
in 31%. and disagree with El-Nagar et al. (2017), who found
4.8% of the isolates have see. Some studies reported that none
of the isolates were positive for see (Rahimi et al., 2013; Nazari
et al., 2014), which disagree with the obtained results.

Conclusion

According to the findings of this study, S. aureus isolated
from ice cream were pathogenic, harbor icaA and icaD gene,
which are responsible for biofilm formation and also some of
S. aureus isolates carry seb and see, which cause food intoxi-
cation. Therefore, much more attention should be paid to hy-
gienic measures during ice cream manufactures.
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